2]曹时武 数学概念课的教学模式探讨[J]. 中学数学 2007.­12 查看更多

 

题目列表(包括答案和解析)

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性 女性 合计
反感 10
不反感 8
合计 30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
8
15

(Ⅰ)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(x2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,当Χ2<2.706时,没有充分的证据判定变量性别有关,当Χ2>2.706时,有90%的把握判定变量性别有关,当Χ2>3.841时,有95%的把握判定变量性别有关,当Χ2>6.635时,有99%的把握判定变量性别有关)
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

查看答案和解析>>

甲乙两人进行某种游戏比赛,规定每一次胜者得1分,负者得0分;当其中一人的得分比另一人的多2分时即赢得这场游戏比赛,比赛随之结束;同时规定比赛次数最多不超过10次,即经10次比赛,得分多者赢得这场游戏,得分相等为和局.已知每次比赛甲获胜的概率为p(0<p<1),乙获胜的概率为q(q=1-p).假定各次比赛的结果是相互独立的,比赛经ξ次结束.
(1)求ξ的分布列及数学期望Eξ.
(2)求ξ的数学期望Eξ的取值范围.

查看答案和解析>>

我们用符号“||”定义过一些数字概念,如实数绝对值的概念:对于a∈R,|a|=
a,a>0
0,a=0
-a,a<0
,可以证明,对任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率p≥
1
5
,求|A∩B|的取值范围.

查看答案和解析>>

某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止.令ξ表示走出迷宫所需的时间.
(1)求ξ的分布列;
(2)求ξ的数学期望.

查看答案和解析>>

用数学归纳法证明“1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
”时,由n=k的假设证明n=k+1时,如果从等式左边证明右边,则必须证得右边为(  )

查看答案和解析>>


同步练习册答案