51.利用重要不等式 以及变式等求函数的最值时.你是否注意到a.b.且“等号成立 时的条件?积ab或和a+b其中之一应是定值? 例:已知.且.则的最小值为 .() 查看更多

 

题目列表(包括答案和解析)

计算
x2+8
x2+4
的最值时,我们可以将
x2+8
x2+4
化成
x2+4+4
x2+4
=
(
x2+4
)
2
+4
x2+4
,再将分式分解成
x2+4
+
4
x2+4
,然后利用基本不等式求最值;借此,计算使得
x2+1+c
x2+c
1+c
c
对一切实数x都成立的正实数c的范围是
[1,+∞)
[1,+∞)

查看答案和解析>>

利用基本不等式求y=
x
x2+2
的最值?当0<x<1时,如何求y=
x+1
x2+2
的最大值.

查看答案和解析>>

设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.

查看答案和解析>>

利用基本不等式求最值,下列运用正确的是(  )

查看答案和解析>>

(2006•宝山区二模)给出函数f(x)=
x2+4
+tx
(x∈R).
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
1
2
时,可以将f(x)化成f(x)=a(
x2+4
+x)+b(
x2+4
-x)
的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
g(x)
+h(x)
,利用基本不等式研究函数F(x)的最值问题.

查看答案和解析>>


同步练习册答案