2.教材课本习题14.5第3题 应用举例(四) 查看更多

 

题目列表(包括答案和解析)

(2013•镇江)通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x-1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数y=
k
x+2
(k≠0)
的图象是由反比例函数y=
k
x
(k≠0)
的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数y=
4
x
的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数y=
4
x
的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式
4
x-1
≤ax-1
的解集.

查看答案和解析>>

27、课本习题研究:
课本122页有一道题是这样的:有一台“造数”的机器,它的加工方式是“对输入的数加上2”后输出一个新数,然后再将输出的新数输入“造数”的机器,又“造”出一个新数,依次进行下去(如图所示).

请你根据对“造数”机器的理解继续做下列各题:
(1)如果开始输入的数是5,则第一次输出的数是
7
,再将输出的数输入,则第2次输出的数是
9

(2)如果开始输入的数是5,则第1000次输出的数是
2005

(3)如果开始输入的数是5,则第
1002
次输出的数是2009;
(4)若第2009次输出的数是4020,则开始输入的数是
2

(5)如果开始输入的数是5,第668次输出的数是2009,那么这台“造数”机器的加工方式变为:“对输入的数加上
3
”后输出一个新数,然后再将输出的新数输入“造数”的机器,又“造”出一个新数,依次进行下去.

查看答案和解析>>

课本习题研究:
(1)课本116页第12题题目内容是这样的:正方形ABCD的对角线交于点O,点O又是另一个正方形A′B′C′O的一个顶点.如果两个正方形的边长相等,那么正方形A′B′C′O绕点O无论怎样旋转,两个正方形重叠部分的面积,总等于一个正方形面积的
 
.请你根据对课本习题的研究,填写(2)题的答案.
(2)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An,分别是正方形的中心,则n个这样的正方形重叠部分的面积和为
 
cm2
精英家教网

查看答案和解析>>

(根据课本习题改编)如图1,在△ABC中,∠C=90°,AC=4,BC=3,四边形DEFG为△ABC的内接正方形,若设正方形的边长为x,容易算出x的长为
6037

探究与计算:
(1)如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为
 

(2)如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为
 

(3)如图4,若三角形内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,请你猜想正方形的边长是多少?并对你的猜想进行证明.
精英家教网

查看答案和解析>>

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.

如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.

(1)写出点B的坐标,并求a的值;

(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).

①求n的值;

②分别写出平移后的两个图象C′和l′对应的函数关系式;

③直接写出不等式的解集.

 

 

查看答案和解析>>


同步练习册答案