6.若函数y=x3-x2-a在[-1,1]上有最大值3.则该函数在[-1,1]上的最小值是 . 查看更多

 

题目列表(包括答案和解析)

已知函数y=f(x)对于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).

(Ⅰ)求函数y=f(x)的解析式;

(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:

对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.

(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;

(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;

(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

已知函数 f (x) = x3 -(l-3)x2 -(l +3)x + l -1(l > 0)在区间[n, m]上为减函数,记m的最大值为m0n的最小值为n0,且满足m0-n0 = 4.

(1)求m0n0的值以及函数f (x)的解析式;

(2)已知等差数列{xn}的首项.又过点A(0, f (0)),B(1, f (1))的直线方程为y=g(x).试问:在数列{xn}中,哪些项满足f (xn)>g(xn)?

(3)若对任意x1x2∈ [a, m0](x1x2),都有成立,求a的最小值.

查看答案和解析>>

已知函数f(x)=-x3x2g(x)=aln xa∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

已知函数f(x)=-x3x2g(x)aln xaR.

(1)若对任意x[1e],都有g(x)≥x2(a2)x恒成立,求a的取值范围;

(2)F(x)P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得POQ中的POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

 

查看答案和解析>>

已知函数f(x)=-x3x2g(x)=aln xa∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>


同步练习册答案