5.无穷等比数列{an}的首项为a1=3.前n项和为Sn.且8S6=7S3.则等于( ) A.2 B.–2 C.6 D.–6 查看更多

 

题目列表(包括答案和解析)

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{a2n}各项的和为.

(1)求数列{an}的首项a1和公比q;

(2)对给定的k(k=1,2,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求数列T(2)的前10项之和;

(3)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn,求Sn,并求正整数m(m>1),使得存在且不等于零.

(注:无穷等比数列各项的和即当n→∞时该无穷等比数列前n项和的极限)

查看答案和解析>>

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{a}各项的和为

(Ⅰ)求数列{an}的首项a1和公比q;

(Ⅱ)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前10项之和;

(Ⅲ)设bi为数列T(k)的第i项,Sn=b1+b2+…+bn,求Sn,并求正整数m(m>1),使得存在且不等于零.(注:无穷等比数列各项的和即当n→∞时该无穷等比数列前n项和的极限)

查看答案和解析>>

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
815

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设数列T(k)是首项为ak,公差为2ak-1的等差数列,求数列T(2)的通项公式及前10项的和.

查看答案和解析>>

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
81
5

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.

查看答案和解析>>

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
81
5

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.

查看答案和解析>>


同步练习册答案