题目列表(包括答案和解析)
(本小题满分12分)
如图5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.
(Ⅰ) 证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?
若能,请指出点N的位置,并加以证明;
若不能,请说明理由.
(本小题满分12分)
如图5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.
(Ⅰ) 证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?
若能,请指出点N的位置,并加以证明;
若不能,请说明理由.
本小题满分12分)如图所示,在四棱锥中,平面,底面是直角梯形,,。
(1)求证:平面平面;
(2)若,求二面角的大小。
(本小题满分12分)
如图:在底面为直角梯形的四棱锥P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.
(1)求证:BD⊥平面PAC
(2)求二面角B-PC-A的大小.
(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.
(1)求异面直线PA与CD所成的角;
(2)求证:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com