已知集合A={x|log2x≤2}.B=(-∞.a).若A⊆B.则实数a的取值范围是(c.+∞).其中c= . 解析:A={x|0<x≤4}.B=(-∞.a). 若A⊆B.则a>4. 即a的取值范围为.∴c=4. 答案:4 题组三 集合的基本运算 查看更多

 

题目列表(包括答案和解析)

图l是某县参加2009年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、…、Am(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图l中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~185cm(含160cm,不含185cm)的学生人数,则在流程图中的判断框内填写的条件是
i<9?
i<9?

查看答案和解析>>

(2009•江苏一模)已知数列{an}的前n项和为Sn,满足an+Sn=3-
82n
,设bn=2nan
(1)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(2)求数列{an•bn}中最大项;
(3)求证:对于给定的实数λ,一定存在正整数k,使得当n≥k时,不等式λSn<bn恒成立.

查看答案和解析>>

某中学,由于不断深化教育改革,办学质量逐年提高.2006年至2009年高考考入一流大学人数如下:
年       份 2006 2007 2008 2009
高考上线人数 116 172 220 260
以年份为横坐标,当年高考上线人数为纵坐标建立直角坐标系,由所给数据描点作图(如图所示),从图中可清楚地看到这些点基本上分布在一条直线附近,因此,用一次函数y=ax+b来模拟高考上线人数与年份的函数关系,并以此来预测2010年高考一本上线人数.如下表:
年     份 2006 2007 2008 2009
年份代码x 1 2 3 4
实际上线人数 116 172 220 260
模拟上线人数 y1=a+b y2=2a+b y3=3a+b y4=4a+b
为使模拟更逼近原始数据,用下列方法来确定模拟函数.
设S=(y1-y1′)2+(y2-y2′)2+(y3-y3′)2+(y4-y4′)2,y1′、y2′、y3′、y4′表示各年实际上线人数,y1、y2、y3、y4表示模拟上线人数,当S最小时,模拟函数最为理想.试根据所给数据,预测2010年高考上线人数.

查看答案和解析>>

三题中任选两题作答
(1)(2011年江苏高考)已知矩阵A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
)
,若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

某学校为了了解2009年高考语文课的考试成绩,计划在高考后对1200名学生进行抽样调查,其中文科300名考生,理科600名考生,艺术类考生200人,体育类考生70人,外语类考生30人,如果要抽120人作为调查分析对象,则按科目分别应抽多少考生?

查看答案和解析>>


同步练习册答案