例4求数列 的前n项和 解:设数列的通项为an.前n项和为Sn. 则 当时. 当时. 查看更多

 

题目列表(包括答案和解析)

 

设数列的通项是关于x的不等式的解集中整数的个数.

(Ⅰ)求,并且证明是等差数列;

(Ⅱ)设mkpN*,m+p=2k的前n项和.求证:

(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论;如果不成立,请说明理由.

 

 

 

 

 

查看答案和解析>>

设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且+2

 (1)求数列{}的通项公式;

 (2)设数列{}的前n项和为,求证:<

【解析】+2求出,由=n-2n(n-1)递写一个式子相减,得{}为等差数列;(2)裂项法求,然后证明<

 

查看答案和解析>>

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x (n∈N*)的解集中整数的个数.数列{an}的前n项和为Sn
(Ⅰ)求an
(Ⅱ)设m,k,p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x (n∈N*)的解集中整数的个数.数列{an}的前n项和为Sn
(Ⅰ)求an
(Ⅱ)设m,k,p∈N*,m+p=2k,求证:数学公式+数学公式数学公式
(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x (n∈N*)的解集中整数的个数.数列{an}的前n项和为Sn
(Ⅰ)求an
(Ⅱ)设m,k,p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>


同步练习册答案