求数列前n项和 (当n为奇数时.,当n为偶数时.) 查看更多

 

题目列表(包括答案和解析)

若数列{bn}满足:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时.
则{cn}是公差为8的准等差数列.
(1)求上述准等差数列{cn}的第8项c8、第9项c9以及前9项的和T9
(2)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式;
(3)设(2)中的数列{an}的前n项和为Sn,若S63>2012,求a的取值范围.

查看答案和解析>>

已知数列{an}满足a1=2,前n项和为Snan+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)

(Ⅰ)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前n项和Tn
(Ⅱ)若数列{cn}满足cn=a2n,试判断cn是否为等比数列,并说明理由;
(Ⅲ)当p=
1
2
时,问是否存在n∈N*,使得(S2n+1-10)c2n=1,若存在,求出所有的n的值;若不存在,请说明理由.

查看答案和解析>>

一个数列{an}:当n为奇数时,an=5n+1;当n为偶数时,an=2
n2
.
求这个数列的前2m项的和(m是正整数).

查看答案和解析>>

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,;当为奇数时,.

(1)若为偶数,且成等差数列,求的值;

(2)设(N),数列的前项和为,求证:

(3)若为正整数,求证:当(N)时,都有.

 

查看答案和解析>>

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,

;当为奇数时,.

(1)若为偶数,且成等差数列,求的值;

(2)设(N),数列的前项和为,求证:

(3)若为正整数,求证:当(N)时,都有.

 

查看答案和解析>>


同步练习册答案