如图.在三棱锥中.⊿是等边三角形.∠PAC=∠PBC=90 º (Ⅰ)证明:AB⊥PC (Ⅱ)若.且平面⊥平面. 求三棱锥体积. (18)解: (Ⅰ)因为是等边三角形., 所以,可得. 如图.取中点.连结,, 则,, 所以平面, 所以. ......6分 (Ⅱ)作.垂足为.连结. 因为. 所以.. 由已知.平面平面.故. ......8分 因为.所以都是等腰直角三角形. 由已知.得. 的面积. 因为平面. 所以三角锥的体积 .......12分 查看更多

 

题目列表(包括答案和解析)

(海南宁夏卷文19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。

查看答案和解析>>

(海南宁夏卷文19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。

查看答案和解析>>

(海南宁夏卷理19)A、B两个投资项目的利润率分别为随机变量X1和X2。根据市场分析,X1和X2的分布列分别为

X1

5%

10%

X2

2%

8%

12%

P

0.8

0.2

P

0.2

0.5

0.3

(1)在A、B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1、DY2

(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和。求f(x)的最小值,并指出x为何值时,f(x)取到最小值。      (注:D(aX + b) = a2DX)

查看答案和解析>>

(海南宁夏卷理19)A、B两个投资项目的利润率分别为随机变量X1和X2。根据市场分析,X1和X2的分布列分别为

X1

5%

10%

X2

2%

8%

12%

P

0.8

0.2

P

0.2

0.5

0.3

(1)在A、B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1、DY2

(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和。求f(x)的最小值,并指出x为何值时,f(x)取到最小值。      (注:D(aX + b) = a2DX)

查看答案和解析>>


同步练习册答案