8.已知动圆方程x2+y2-xsin2θ+2ysin(θ+)=0(θ为参数).那么圆心的轨迹方程是 . 解析:圆心轨迹的参数方程为: 即 消去参数θ得y2=1+2x(-≤x≤). 答案:y2=1+2x x∈[-.] 查看更多

 

题目列表(包括答案和解析)

已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程.

查看答案和解析>>

(2010•石家庄二模)已知动圆M经过点G(0,-1),且与圆Q:x2+(y-1)2=8内切.
(Ⅰ)求动圆M的圆心的轨迹E的方程.
(Ⅱ)以m=(1,
2
)
为方向向量的直线l交曲线E于不同的两点A、B,在曲线E上是否存在点P使四边形OAPB为平行四边形(O为坐标原点).若存在,求出所有的P点的坐标与直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知动圆C与定圆C3
x
2
 
+2x+
y
2
 
+
3
4
=0
相外切,与定圆C2
x
2
 
-2x+
y
2
 
-
45
4
=0
内相切.
(1)求动圆C的圆心C的轨迹方程;
(2)若直线l:y=kx+l(k≠0)与C的轨迹交于不同的两点M、N,且线段MN的垂直平分线过定点G(
1
8
,0)
,求k的取值范围.

查看答案和解析>>

已知动圆M与圆F:x2+(y-2)2=1外切,与圆N:x2+y2+4y-77=0内切,求动圆圆心M所在的曲线C的方程.

查看答案和解析>>

如图所示,点N在圆x2+y2=4上运动,DN⊥x轴,点M在DN的延长线上,且
DM
DN
(λ>0).
(1)求点M的轨迹方程,并求当λ为何值时M的轨迹表示焦点在x轴上的椭圆;
(2)当λ=
1
2
时,(1)所得曲线记为C,已知直线l:
x
2
+y=1
,P是l上的动点,射线OP(O为坐标原点)交曲线C于点R,又点Q在OP上且满足|OQ|•|OP|=|OR|2,求点Q的轨迹方程.

查看答案和解析>>


同步练习册答案