题目列表(包括答案和解析)
2πm | qB |
选做题(请从A、B和C三小题中选定两小题作答,并在答题纸上把所选题目对应字母后的方框涂满涂黑.如都作答则按A、B两小题评分)
A.(选修模块3—3) (12分)
⑴有以下说法,其中正确的是 .
A.在两分子间距离增大的过程中,分子间的作用力减小
B.布朗运动反映了花粉小颗粒内部分子的无规则运动
C.晶体一定具有规则形状,且有各向异性的特征
D.温度、压力、电磁作用等可以改变液晶的光学性质
⑵一定质量的理想气体从状态A(p1、V1)开始做等压膨胀变化到
状态B(p1、V2),状态变化如图中实线所示.此过程中气体对外做的功为 ▲ ,气体分
子的平均动能 ▲ (选填“增大”“减小”或“不变”), 气体 ▲ (选填“吸收”或“放出”)
热量.
⑶已知地球的半径R,地球表面的重力加速度g,大气压强p0,空气的平均摩尔质量为M,
阿伏加德罗常数NA.请结合所提供的物理量估算出地球周围大气层空气的分子数.
B.(选修模块3—4) (12分)
⑴下列说法正确的是 ▲
A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。
B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调
C.当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。
D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆
静止时的长度小
⑵如图所示,为黄光、蓝光分别通过同一干涉装置形成的干涉条纹中心部
分。则图甲为 ▲ 产生的干涉条纹(选填“黄光”或“蓝光”).若将两
种颜色的光以同样的入射角入射到两种物质的介面上,图甲对应的色
光发生了全反射,则图乙对应的色光 ▲ (选填“一定”、“可能”或“不
可能”)发生全反射.
⑶图中实线和虚线分别是x轴上传播的一列简谐横波在t=0和t=0.3s时刻的波形图,x=1.2m处的质点在t=0.3s时刻向y轴正方向运动。
求:
①波的传播方向和周期;
②波的传播波速
C. (选修3-5试题) (12分)
⑴(4分)下列说法正确的是 ▲
A.原子核内部某个中子转变为质子和电子,产生的电子从原子核中发射出来,这就是β衰变
B.比结合能小的原子核结合成或分解成比结合能大的原子核时一定吸收核能
C.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能增大,核外电子的运动速度减小。
D.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切物体都具有波粒二象性。
⑵(4分))现用下列几种能量的光子的光照射处于
基态的氢原子,A:10.25eV、B:12.09eV、C:
12.45eV,则能被氢原子吸收的光子是 ▲ (填
序号),氢原子吸收该光子后可能产生 ▲ 种
频率的光子.氢原子能级图为:
⑶ (4分) 如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点
计时器的纸带,当甲车受到水平向右的瞬时冲量时,随即启动打点计时器,甲车运动一
段距离后,与静止的乙车发生正碰并粘在一起运动,纸带记录下碰撞前甲车和碰撞后两
车运动情况如图(b)所示,电源频率为50Hz,求:甲、乙两车的质量比m甲:m乙
选做题(请从A、B和C三小题中选定两小题作答,并在答题纸上把所选题目对应字母后的方框涂满涂黑.如都作答则按A、B两小题评分)
A.(选修模块3—3) (12分)
⑴有以下说法,其中正确的是 .
A.在两分子间距离增大的过程中,分子间的作用力减小
B.布朗运动反映了花粉小颗粒内部分子的无规则运动
C.晶体一定具有规则形状,且有各向异性的特征
D.温度、压力、电磁作用等可以改变液晶的光学性质
⑵一定质量的理想气体从状态A(p1、V1)开始做等压膨胀变化到
状态B(p1、V2),状态变化如图中实线所示.此过程中气体对外做的功为 ▲ ,气体分
子的平均动能 ▲ (选填“增大”“减小”或“不变”), 气体 ▲ (选填“吸收”或“放出”)
热量.
⑶已知地球的半径R,地球表面的重力加速度g,大气压强p0,空气的平均摩尔质量为M,
阿伏加德罗常数NA.请结合所提供的物理量估算出地球周围大气层空气的分子数.
B.(选修模块3—4) (12分)
⑴下列说法正确的是 ▲
A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。
B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调
C.当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。
D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆
静止时的长度小
⑵如图所示,为黄光、蓝光分别通过同一干涉装置形成的干涉条纹中心部
分。则图甲为 ▲ 产生的干涉条纹(选填“黄光”或“蓝光”).若将两
种颜色的光以同样的入射角入射到两种物质的介面上,图甲对应的色
光发生了全反射,则图乙对应的色光 ▲ (选填“一定”、“可能”或“不
可能”)发生全反射.
⑶图中实线和虚线分别是x轴上传播的一列简谐横波在t=0和t=0.3s时刻的波形图,x=1.2m处的质点在t=0.3s时刻向y轴正方向运动。
求:
①波的传播方向和周期;
②波的传播波速
C. (选修3-5试题) (12分)
⑴(4分)下列说法正确的是 ▲
A.原子核内部某个中子转变为质子和电子,产生的电子从原子核中发射出来,这就是β衰变
B.比结合能小的原子核结合成或分解成比结合能大的原子核时一定吸收核能
C.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能增大,核外电子的运动速度减小。
D.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切物体都具有波粒二象性。
⑵(4分))现用下列几种能量的光子的光照射处于
基态的氢原子,A:10.25eV、B:12.09eV、C:
12.45eV,则能被氢原子吸收的光子是 ▲ (填
序号),氢原子吸收该光子后可能产生 ▲ 种
频率的光子.氢原子能级图为:
⑶ (4分) 如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点
计时器的纸带,当甲车受到水平向右的瞬时冲量时,随即启动打点计时器,甲车运动一
段距离后,与静止的乙车发生正碰并粘在一起运动,纸带记录下碰撞前甲车和碰撞后两
车运动情况如图(b)所示,电源频率为50Hz,求:甲、乙两车的质量比m甲:m乙
第十部分 磁场
第一讲 基本知识介绍
《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。
一、磁场与安培力
1、磁场
a、永磁体、电流磁场→磁现象的电本质
b、磁感强度、磁通量
c、稳恒电流的磁场
*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。
毕萨定律应用在“无限长”直导线的结论:B = 2k ;
*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI ;
*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。
2、安培力
a、对直导体,矢量式为 = I;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。
b、弯曲导体的安培力
⑴整体合力
折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。
证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为
F =
= BI
= BI
关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。
证毕。
由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)
⑵导体的内张力
弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。
c、匀强磁场对线圈的转矩
如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为
M = BIS
几种情形的讨论——
⑴增加匝数至N ,则 M = NBIS ;
⑵转轴平移,结论不变(证明从略);
⑶线圈形状改变,结论不变(证明从略);
*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;
证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…
⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。
证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…
说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。
二、洛仑兹力
1、概念与规律
a、 = q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为与的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。
b、能量性质
由于总垂直与确定的平面,故总垂直 ,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。
问题:安培力可以做功,为什么洛仑兹力不能做功?
解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。
很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)
☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?
若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。
2、仅受洛仑兹力的带电粒子运动
a、⊥时,匀速圆周运动,半径r = ,周期T =
b、与成一般夹角θ时,做等螺距螺旋运动,半径r = ,螺距d =
这个结论的证明一般是将分解…(过程从略)。
☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?
其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)
3、磁聚焦
a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。
b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。
4、回旋加速器
a、结构&原理(注意加速时间应忽略)
b、磁场与交变电场频率的关系
因回旋周期T和交变电场周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、质谱仪
速度选择器&粒子圆周运动,和高考要求相同。
第二讲 典型例题解析
一、磁场与安培力的计算
【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。解题过程从略。
【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ →
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com