题目列表(包括答案和解析)
(本题满分16分)如图,已知椭圆:的长轴长为4,离心率,为坐标原点,过的直线与轴垂直.是椭圆上异于、的任意一点,轴,为垂足,延长到点使得,连结延长交直线于点,为的中点.
(1)求椭圆的方程;w ww.ks 5u.co m
(2)证明点在以为直径的圆上;
(3)试判断直线与圆的位置关系.
(本小题满分16分)如图,在平面直角坐标系中,已知,,,直线与线段、分别交于点、.
(Ⅰ)当时,求以为焦点,且过中点的椭圆的标准方程;
(Ⅱ)过点作直线∥交于点,记的外接圆为圆.
① 求证:圆心在定直线上;
② 圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.
.(本题满分16分,其中第1小题4分,第2小题6分,第3小题6分,)
如图,已知椭圆,,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.
(1)求椭圆和双曲线的标准方程;
(2)设直线、的斜率分别为、,证明;
(3)是否存在常数,使得
恒成立?若存在,求的值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com