数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0.如果当n=n0时.命题成立.再假设当n=k(k≥n0.k∈N*)时.命题成立.(这时命题是否成立不是确定的).根据这个假设.如能推出当n=k+1时.命题也成立.那么就可以递推出对所有不小于n0的正整数n0+1.n0+2.-.命题都成立. 查看更多

 

题目列表(包括答案和解析)

对于不等式
n2+n
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
12+1
<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即
k2+k
<k+1,则当n=k+1时,
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法(  )
A、过程全部正确
B、n=1验得不正确
C、归纳假设不正确
D、从n=k到n=k+1的推理不正确

查看答案和解析>>

对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:

(1)当n=1时,<1+1,不等式成立.

(2)假设当nk(k∈N*k≥1)时,不等式成立,即<k+1,则当nk+1时,<=(k+1)+1,

所以当nk+1时,不等式成立,则上述证法                    (  ).

A.过程全部正确

B.n=1验得不正确

C.归纳假设不正确

D.从nknk+1的推理不正确

查看答案和解析>>

对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即<k+1,则当n=k+1时,===(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确

查看答案和解析>>

已知数列满足:

(Ⅰ)计算的值;

(Ⅱ)由(Ⅰ)的结果猜想的通项公式,并用数学归纳法证明你的结论.

【解析】本试题主要考查了数列的通项公式的求解和猜想和数学归纳法的证明。

 

查看答案和解析>>

对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即<k+1,则当n=k+1时,===(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确

查看答案和解析>>


同步练习册答案