解:⑴ 作图:作∠BAC的平分线交线段BC于E, -------------------4分 (痕迹清晰.准确.本步骤给满分4分.否则酌情扣1至4分,另外两点及边作的是否准确.不扣分) ⑵ 如图.∵ 四边形ADEF是正方形. ∴ EF∥AB.AD = DE = EF = FA. --5分 ∴ △CFE ∽△CAB. ∴ .-------------6分 ∵ AC = 2 .AB = 6. 设AD = DE = EF = FA = x. ∴ . ---------------------------------------7分 ∴ x=.即正方形ADEF的边长为. ------------------------8分 (本题可以先作图后计算.也可以先计算后作图,未求出AD或AF的值用作中垂线的方法找到D点或F点.给2分) 查看更多

 

题目列表(包括答案和解析)

问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为______.
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

查看答案和解析>>

问题背景:

如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:

如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为________.

(2)知识拓展:

如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

查看答案和解析>>

如图1,在Rt△ABC中,∠BAC=90°,AB=80,BC=100.线段BC所在的直线以每秒2个单位的速度沿BA方向运动,并始终保持与原位置平行,交AB于点D,交AC于点E.解答下列问题:
(1)求AC的长.
(2)记x秒时,该直线在△ABC内的部分DE的长度为y,试求出y关于x的函数关系式,并写出自变量x的取值范围.
(3)如图2,过点D作DG⊥BC于点G,过点E作EF⊥BC于点F,当x为何值时,矩形DEFG的面积最大,最大值是多少?
精英家教网

查看答案和解析>>

如图1,在Rt△ABC中,∠BAC=90°,AB=80,BC=100.线段BC所在的直线以每秒2个单位的速度沿BA方向运动,并始终保持与原位置平行,交AB于点D,交AC于点E.解答下列问题:
(1)求AC的长.
(2)记x秒时,该直线在△ABC内的部分DE的长度为y,试求出y关于x的函数关系式,并写出自变量x的取值范围.
(3)如图2,过点D作DG⊥BC于点G,过点E作EF⊥BC于点F,当x为何值时,矩形DEFG的面积最大,最大值是多少?

查看答案和解析>>

如图1,在Rt△ABC中,∠BAC=90°,AB=80,BC=100.线段BC所在的直线以每秒2个单位的速度沿BA方向运动,并始终保持与原位置平行,交AB于点D,交AC于点E.解答下列问题:
(1)求AC的长.
(2)记x秒时,该直线在△ABC内的部分DE的长度为y,试求出y关于x的函数关系式,并写出自变量x的取值范围.
(3)如图2,过点D作DG⊥BC于点G,过点E作EF⊥BC于点F,当x为何值时,矩形DEFG的面积最大,最大值是多少?

查看答案和解析>>


同步练习册答案