15.通过研究萤火虫的发光原理发明了冷光灯.这种技术属于( ) A.仿生 B.克隆 C.遗传 D.变异 查看更多

 

题目列表(包括答案和解析)

一元二次方程ax2+bx+c=0(a≠0,a,b,c都是有理数)的求根公式是x=
-b±
b2-4ac
2a
(b2-4ac≥0)通过研究我们知道:若方程的根是有理数根,则b2-4ac必是完全平方数,已知方程x2-2x+m=0的根是有理数,则下列数中,m可以取的是(  )

查看答案和解析>>

(1)计算:2-1+20070+
1
2
+1
+tan45°;
(2)化简求值:(1+
1
x-1
)•(x2-1)
,其中x=
1
3

(3)在数学上,对于两个数p和q有三种平均数,即算术平均数A、几何平均数G、调和平均数H,其中A=
p+q
2
,G=
pq
.而调和平均数中的“调和”二字来自于音乐,毕达哥拉斯学派通过研究发现,如果三根琴弦的长度p=10,H=12,q=15满足
1
10
-
1
12
=
1
12
-
1
15
,再把它们绷得一样紧,并用同样的力弹拨,它们将会分别发出很调和的乐声.我们称p、H、q为一组调和数,而把H称为p和q的调和平均数.
①若p=2,q=6,则A=
 
,G=
 

②根据上述关系,用p、q的代数式表示出它们的调和平均数H;并根据你所得到的结论,再写出一组调和数.

查看答案和解析>>

“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国
古代数学史上经常研究这一神话.
(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;
(2)通过研究问题(1),利用你发现的规律,将3,5,-7,1,7,-3,9,-5,-1
这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.

查看答案和解析>>

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
1
x
(x>0)的图象和性质.精英家教网
①填写下表,画出函数的图象;
x
1
4
1
3
1
2
1 2 3 4
y              
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
1
x
(x>0)的最小值.

【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28…?2m×2n=2m+n…?am×an=am+n(m、n都是正整数).
我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4

(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式.
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.

查看答案和解析>>


同步练习册答案