已知等差数列中, 求a1和k. 12. 数列的前n项和记为, 已知, 证明: (1)数列是等比数列,(2) 13. 等比数列同时满足下列三个条件: (1) (2) (3)三个数成等差数列. 试求数列 的通项公式. 数列的基本性质解答 查看更多

 

题目列表(包括答案和解析)

已知公差不为0的等差数列{an}的前n项和为Sn,且满足S5=3a5-2,又a1,a2,a5依次成等比数列,数列{bn}满足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k为大于0的常数.
(1)求数列{an},{bn}的通项公式;
(2)记数列an+bn的前n项和为Tn,若当且仅当n=3时,Tn取得最小值,求实数k的取值范围.

查看答案和解析>>

已知公差不为0的等差数列{an}的前n项和为Sn,且满足S5=3a5-2,又a1,a2,a5依次成等比数列,数列{bn}满足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k为大于0的常数.
(1)求数列{an},{bn}的通项公式;
(2)记数列an+bn的前n项和为Tn,若当且仅当n=3时,Tn取得最小值,求实数k的取值范围.

查看答案和解析>>

若数列{an}满足an+12-an2=d,其中d为常数,则称数列{an}为等方差数列.已知等方差数列{an}满足an>0,a1=1,a5=3.
(1)求数列{an}的通项公式.
(2)求数列数学公式的前n项和.
(3)记bn=nan2,则当实数k大于4时,不等式kbn大于n(4-k)+4能否对于一切的n∈N*恒成立?请说明理由.

查看答案和解析>>

若数列{an}满足an+12-an2=d,其中d为常数,则称数列{an}为等方差数列.已知等方差数列{an}满足an>0,a1=1,a5=3.
(1)求数列{an}的通项公式.
(2)求数列的前n项和.
(3)记bn=nan2,则当实数k大于4时,不等式kbn大于n(4-k)+4能否对于一切的n∈N*恒成立?请说明理由.

查看答案和解析>>

公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+
2
S3=12+3
2

(Ⅰ)求数列{an}的通项公式an及其前n项和Sn
(Ⅱ)记bn=an-
2
,若自然数η1,η2,…,ηk,…满足1≤η1<η2<…<ηk<…,并且bη1bη2,…,bη_,…成等比数列,其中η1=1,η2=3,求ηk(用k表示);
(Ⅲ)记cn=
Sn
n
,试问:在数列{cn}中是否存在三项cr,cs,ct(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案