解: (1) 由的图象经过P,知, 所以 .即 由在处的切线方程是, 知 , 故所求的解析式是 (2) 令即 解得 当 当 故在内是增函数, 在内是减函数, 在内是增函数. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假.
(1)p:5是17的约数,q:5是15的约数.
(2)p:方程x2-1=0的解是x=1,q:方程x2-1=0的解是x=-1,
(3)p:不等式x2+2x+2>1的解集为R,q:不等式x2+2x+2≤1的解集为∅

查看答案和解析>>

1、下列问题的算法适宜用条件结构表示的是(  )

查看答案和解析>>

给出下列命题:
①不等式
1
x
≥2
的解集是{x|x≤
1
2
}

②若α,β是第一象限角,且α>β,则sinα>sinβ;
tan20°+tan40°+
3
tan20°tan40°=
3

④f(x)=2sin(3x+1)的图象可由y=2sin3x的图象向左平移1个单位得到;
⑤函数f(x)=
cos2x
cosx-sinx
的值域是(-
2
2
)

其中正确的命题的序号是
③⑤
③⑤
(要求写出所有正确命题的序号).

查看答案和解析>>

对于下列结论:
①函数y=ax+2(x∈R)的图象可以由函数y=ax(a>0且a≠1)的图象平移得到;
②函数y=2x与函数y=log2x的图象关于y轴对称;
③方程log5(2x+1)=log5(x2-2)的解集为{-1,3};
④函数y=ln(1+x)-ln(1-x)为奇函数.
其中正确的结论是
①④
①④
(把你认为正确结论的序号都填上).

查看答案和解析>>


同步练习册答案