研究实例 (1)探讨函数.当无限趋近于2时的变化趋势. 当从左侧趋近于2时.记为:. 1.1 1.3 1.5 1.7 1.9 1.99 1.999 1.9999 2 y=x2 1.21 1.69 2.25 2.89 3.61 3.9601 3.996 3.9996 4 当从右侧趋近于2时, 记为:. 2.9 2.7 2.5 2.3 2.1 2.01 2.001 2.0001 2 y=x2 8.41. 7.29 6.25 5.25 4.41 4.04 4.004 4.0004 4 发现,,因此有. (2)我们再继续看,当无限趋近于1()时的变化趋势: ,当从左侧趋近于1时.即时.. 当从右侧趋近于1时, 即时.. 即. (3)分段函数当x→0的变化趋势. ①x从0的左边无限趋近于0.则的值无限趋近于-1.即 ②x从0的右边无限趋近于0.则的值无限趋近于1. 即 可以看出.并且都不等于.象这种情况.就称当时.的极限不存在. 查看更多

 

题目列表(包括答案和解析)

人们通过研究发现1,3,6,10,…这些数能表示三角形,所以将其称为三角形数,类似地,1,4,9,16…这样的数称为正方形数,下列数中既是三角形数又是正方形数的是(  )
A、289B、1024C、1225D、1378

查看答案和解析>>

传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过1,3,6,10,…,可以用如图的三角形点阵表示,那么第10个点阵表示的数是
 

精英家教网

查看答案和解析>>

已知函数f(x)=
4x
x2+a
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

(2012•普陀区一模)设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足|
FP1
|+|
FP2
|+|
FP3
|=6

(2)当n≥3时,若
FP1
+
FP2
+…+
FPn
=
0
,求证:|
FP1
|+|
FP2
|+…+|
FPn
|=np

(3)当n>3时,某同学对(2)的逆命题,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,则
FP1
+
FP2
+…+
FPN
=
0
”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

已知函数.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x0.10.20.50.811.21.51.8246
y0.3960.7691.61.95121.9671.8461.6981.60.9410.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式

查看答案和解析>>


同步练习册答案