9.解不等式: 解:原不等式 ①∴a=2时,不等式的角为x>; ②a>2时,a-2>0, 故原不等式解为<x≤0或x≥a-2 ③当1<a<2时.a-2<0. ∴原不等式解为<x≤a-2或x≥0 查看更多

 

题目列表(包括答案和解析)

古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解。在欧几里得的《几何原本》中,形如(a>0,b>0)的方程的图解法是:如图,以和b为两直角边做Rt△ABC,再在斜边上截取,则AD的长就是所求方程的解。

(1)请用含字母a、b的代数式表示AD的长。

(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处。

查看答案和解析>>

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间的距离为8,f(x)=f1(x)+f2(x)

(1)求函数f(x)的表达式;

(2)求证:当a>3时,关于x的方程f(x)=f(a)有三个不相等的实数解

查看答案和解析>>

解答题:解答应写出文字说明、证明过程或演算步骤.

已知函数f(x)=loga(x+1)(a>0且a≠1),点P是y=f(x)图象上的任意一点,P关于原点的对称点Q的轨迹是函数y=g(x)的图象

(1)

求y=g(x)的解析式

(2)

当0<a<1时,解不等式2f(x)+g(x)≥0

(3)

当a>1,x∈[0,1)时,2f(x)+g(x)≥m恒成立,求m范围.

查看答案和解析>>


同步练习册答案