22.(1)过点P作PH⊥AC于H.则∠CPH=∠α. 查看更多

 

题目列表(包括答案和解析)

如图,在直角梯形ABCD中,AD∥BC,DC⊥BC于C,A(0,
11
2
),B(-6,0),连接BD,交y轴于点E,tan∠DBC=
1
2

(1)求直线BD的解析式;
(2)点P从B出发,以每秒1个单位的速度向终点C匀速运动,过点P作PH⊥BD于H,设HE的长为y(y≠0),点P的运动时间为t秒,求y与t的函数关系式,并直接写出t的取值范围;
(3)在(2)的条件下,连接AP,以AP为直径的圆交线段BD于Q,当tan∠APQ=
1
2
时,求t的值.

查看答案和解析>>

(2011•温州一模)如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,DE=16,M是BC边上的中点,动点P从点A出发,沿边AB以每秒1单位长度的速度向终点B运动.设动点P的运动时间是t秒;

(1)求线段AE的长;
(2)当△ADE与△PBM相似时,求t的值;
(3)如图2,连接EP,过点P作PH⊥AE于H.
①当EP平分四边形PMEH的面积时,求t的值;
②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).

查看答案和解析>>

如图,菱形OABC在平面直角坐标系中,点C的坐标为(3,4),点A在x轴的正半轴上,直线AC交y轴于点D.动点P从A出发,以每秒2个单位的速度沿折线A-B-C向点C匀速运动,同时点Q从点D出发,以每秒
5
个单位的速度沿D精英家教网A向点A匀速运动;设点P、Q运动时间为t(秒)
(1)求点A的坐标;
(2)求△PCQ的面积S(S≠0)与运动时间t的函数关系式,并写出自变量的取值范围;
(3)过点P作PH⊥AD于H,试求点P在运动的过程中t为何值时,tan∠PQH=
1
4

查看答案和解析>>

如图,在平面直角坐标系中,O为坐标原点,点A、B在x轴正半轴上,点C在y轴正半轴上,连接AC、BC,tan∠CAO=
4
3
,tan∠CBO=
1
2
,AB=5.
(1)求点C的坐标;
(2)点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动,过点P作PH⊥BC于点H,直线PH与CA的延长线交于点E,设PE的长为y(y≠0),点P的运动时间为t秒,求y与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,当
AE
CE
=
1
3
时,求t的值,并判断此时以点B为圆心,以PE长为半径的⊙B与直线PH的位置关系,请说明理由.

查看答案和解析>>

(2009•保定一模)如图,?ABCD的对角线相交于G,OC=6cm,CB=8cm,∠ABC=60°,点P从O点出发,1cm/s的速度沿OA向点A移动,D是CG的中点,连接PD并延长交CB于E,连接EG并延长交OA于F,过点P作PH⊥OC于H,连接BH、BP,设移动时间为t秒(t>0),FA=ycm,△BPH的面积为Scm2
(1)求y关于t的函数关系式;
(2)求S关于t的函数关系式;
(3)以O为原点,OA所在直线为x轴,建立如图所示的直角坐标系,求t=2秒时,直线BH与y轴的交点坐标.

查看答案和解析>>


同步练习册答案