(1) . . 0. , . 0. . 0, 2. 1. 3. 2, . . (2)已知:和是方程的两个根. 那么.. . 查看更多

 

题目列表(包括答案和解析)

,已知A(-4,0),B(-1,4), 将线段AB绕点O,顺时针旋转90°,得到线段A′B′

(1)求直线BB′的解析式;
(2)抛物线y1=ax2-19cx+16c经过A′B′两点,求抛物线的解析式
并画出它的图象;
(3)在(2)的条件下,若直线A′B′的函数解析式为y2=mx+n,观察图
象,当y1y2时,写出x的取值范围.

查看答案和解析>>

,已知A(-4,0),B(-1,4), 将线段AB绕点O,顺时针旋转90°,得到线段A′B′

(1)求直线BB′的解析式;

(2)抛物线y1=ax2-19cx+16c经过A′B′两点,求抛物线的解析式

并画出它的图象;

(3)在(2)的条件下,若直线A′B′的函数解析式为y2=mx+n,观察图

象,当y1y2时,写出x的取值范围.

 

查看答案和解析>>

,已知A(-4,0),B(-1,4), 将线段AB绕点O,顺时针旋转90°,得到线段A′B′

(1)求直线BB′的解析式;
(2)抛物线y1=ax2-19cx+16c经过A′B′两点,求抛物线的解析式
并画出它的图象;
(3)在(2)的条件下,若直线A′B′的函数解析式为y2=mx+n,观察图
象,当y1y2时,写出x的取值范围.

查看答案和解析>>

已知抛物线y=-
23
(x+2)2+k与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,C点在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根.
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

已知M是平行四边形ABCD的边CD的中点,N为AB边上一点,且AN=3NB,连AM、MN分别交BD于E、F(如图①).
(1)在图②中画出满足上述条件的图形,试用刻度尺在图①、②中量得DE、EF、FB的长度,并填入下表.
DE的长度 EF的长度 FB的长度
图①中
图②中
由上表可猜想DE、EF、FB间的大小关系是DE=EF=FB.
(2)上述(1)中的猜想DE、EF、FB间的关系成立吗?为什么?
(3)若将平行四边形ABCD改成梯形(其中AB∥CD),且AB=2CD,其它条件不变,此时(1)中猜想DE、EF、FB的关系是否成立?若成立,说明理由;若不成立,求出DE:EF:FB的值.精英家教网

查看答案和解析>>


同步练习册答案