题目列表(包括答案和解析)
a+c |
b |
α+β |
2 |
α-β |
2 |
α+β |
2 |
α-β |
2 |
下列语句中是算法的个数为( )
①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;
②统筹法中“烧水泡茶”的故事;
③测量某棵树的高度,判断其是否是大树;
④已知三角形的一部分边长和角,借助正余弦定理求得剩余的边角,再利用三角形的面积公式求出该三角形的面积。
A.1 B.2 C.3 D.4
①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎 ②统筹法中“烧水泡茶”的故事 ③测量某棵树的高度,判断其是否是大树 ④已知三角形的一部分边长和角,借助正、余弦定理求得剩余的边和角,再利用三角形的面积公式求出该三角形的面积
A.1 B.2 C.3 D.4
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵,∴,…………………1分
∵,得到三角关系是,结合,解得。
(2)由,解得,,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②联立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
将①代入②中,可得 ③ …………………4分
将③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,从而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
综上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
综上可得 …………………12分
(若用,又∵ ∴ ,
本题可能用到的公式
sinα·cosβ=[sin(α+β)+sin(α-β)]
cosα·sinβ=[sin(α+β)-sin(α-β)]
cosα·cosβ=[cos(α+β)+cos(α-β)]
sinα·sinβ=-[cos(α+β)-cos(α-β)]
在△ABC中,角A、B、C所对的边分别为a、b、c,复数z=cosA+isinA.且满足|z+1|=1.
(1)求复数z的值;
(2)求的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com