5.古典概型 (1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个,2)每个基本事件出现的可能性相等, (2)古典概型的概率计算公式:P(A)=, 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是.如果某个事件A包含的结果有m个,那么事件A的概率P(A)=. 查看更多

 

题目列表(包括答案和解析)

在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。

(1)求取出的两个球上标号为相邻整数的概率;

(2)求取出的两个球上标号之和能被3整除的概率.

【解析】本试题主要考查了古典概型概率的求解。第一问中,基本事件数为共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

总数为16种.其中取出的两个小球上标号为相邻整数的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种利用古典概型可知,P=3 /8 ;

(2)其中取出的两个小球上标号之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5种可得概率值5 /16 ;

解:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件

共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

总数为16种.

(1)其中取出的两个小球上标号为相邻整数的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种

故取出的两个小球上标号为相邻整数的概率P=3 /8 ;

(2)其中取出的两个小球上标号之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5种

故取出的两个小球上标号之和能被3整除的概率为5 /16 ;

 

查看答案和解析>>

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(I)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;

(II)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n.若以 作为点P的坐标,求点P落在区域内的概率.

【解析】第一问利用古典概型概率求解所有的基本事件数共12种,然后利用方程有实根,则满足△=4a2-4b2≥0,即a2≥b2。,这样求得事件发生的基本事件数为6种,从而得到概率。第二问中,利用所有的基本事件数为16种。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。在求解满足的基本事件数为(1,1) (2,1)  (2,2) (3,1) 共4种,结合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12种。

有实根, ∴△=4a2-4b2≥0,即a2≥b2

记“有实根”为事件A,则A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6种。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。

记“点P落在区域内”为事件B,则B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4种。∴PB.=

 

查看答案和解析>>

________是古典概型.

[  ]

A.任意抛掷两枚骰子,所得点数之和作为基本事件

B.为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件

C.从甲地到乙地共有n条路线,求某人正好选中最短路线的概率

D.抛掷一枚均匀硬币至首次出现正面为止

查看答案和解析>>

________是古典概型.

[  ]

A.任意抛掷两枚骰子,所得点数之和作为基本事件

B.为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件

C.从甲地到乙地共有n条路线,求某人正好选中最短路线的概率

D.抛掷一枚均匀硬币至首次出现正面为止

查看答案和解析>>

古典概型的两个基本特征是:
(1)
试验的所有可能结果只有有限个
试验的所有可能结果只有有限个

(2)
每一个试验结果出现的可能性相同.
每一个试验结果出现的可能性相同.

查看答案和解析>>


同步练习册答案