题目列表(包括答案和解析)
从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标,若是3的倍数,则满足条件的点的个数为
A.252 B.216 C.72 D.42
一.选择题(每小题5分,共60分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
D
D
B
D
A
C
C
A
A
二.填空题(每小题4分,共16分)
13. 14. 15. 16. -
三、解答题:(本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤).
17、(本小题满分12分)
解:由得:
(3分)
因为所以 所以 (6分)
由正弦定理得. (8分) 从而由余弦定理及得:
(12分)
18、(本小题满分12分)
解:(1)∵这支篮球队与其他各队比赛胜场的事件是相互独立的,
∴首次胜场前已负了两场的概率P=(1-)×(1-)×=. 4分
(2)设A表示这支篮球队在6场比赛中恰好胜了3场的事件,则P(A)就是6次独立重复试验中恰好发生3次的概率.∴P(A)=P6(3)=C()3(1-)3=. 8分
(3)设ξ表示这支篮球队在6场比赛中胜场数,则ξ~B(6,).
∴Dξ=6××(1-)=,Eξ=6×=2.
故这支篮球队在6场比赛中胜场数的期望是2,方差是. 12分
19、(本小题满分12分)
解: (4分)
,
( 6分)
当时,当时,,(9分)
当时,
当时, (11分)
综上,
所以,为等差数列.(12分)
20.(本题?分12分)
解 (1)如图2,将已知条件实现在长方体中,则直线与平面所成的角为,ks5u直线与平面所成角的为.在直角中,有,故=;在直角中,有,
故=. 6分
(2)如图2,作有
设二面角的平面角为,则
得:. 12分
21、(本小题满分12分)
解:因为线段的两端点在抛物线上,故可设,设线段的中点,则 7分
又,
所以: 11分
所以,线段的中点的轨迹方程为. 12分
22、(本小题满分14分)
(1)解:f′(x)=3x2-6ax+b,
过P1(x1,y1)的切线方程是y-y1=f′(x1)(x-x1)(x1≠0).
又原点在直线上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),
解得x1=. 4分
(2)解:过Pn(xn,yn)的切线方程是y-yn=f′(xn)(x-xn).
又Pn+1 (xn+1,yn+1)在直线上,
所以(xn+1-xn)2(xn+1+2xn-
解得xn+1+2xn-
(3)证明:由(2)得xn+1-a=-2(xn-a),
所以数列{xn-a}是首项为x1-a=,公比为-2的等比数列.
∴xn=a+?(-2)n-1,
即xn=[1-(-2)n-2]a.
当n为正偶数时,xn<a;当n为正奇数时, xn>a. 14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com