6.善于捕捉利用分项求和与放缩法使所得数列为等差等比数列再求和的机会 练习: ①正项数列{}中..求证: 分析: ②已知{}中.求证: 分析: 查看更多

 

题目列表(包括答案和解析)

已知数列满足,

(1)求证:数列是等比数列;

(2)求数列的通项和前n项和

【解析】第一问中,利用,得到从而得证

第二问中,利用∴ ∴分组求和法得到结论。

解:(1)由题得 ………4分

                    ……………………5分

   ∴数列是以2为公比,2为首项的等比数列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>

记等差数列{an}的前n项的和为Sn,利用倒序求和的方法得:Sn=
n(a1+an)
2
;类似地,记等比数列{bn}的前n项的积为Tn,且bn>0(n∈N*),试类比等差数列求和的方法,将Tn表示成首项b1,末项bn与项数n的一个关系式,即Tn=
(b1bn)
n
2
(b1bn)
n
2

查看答案和解析>>

记等差数列{an} 的前n项和Sn,利用倒序求和的方法得:Sn=
n( a1+an)2
;类似的,记等比数列{bn}的前n项的积为Tn,且bn>0(n∈N+),试类比等差数列求和的方法,可将Tn表示成首项b1,末项bn与项数n的一个关系式,即公式Tn=
 

查看答案和解析>>

利用通项求和,求1+11+111+…+
111…1
n个1
之和.

查看答案和解析>>

利用导数求和:
(1)Sn=1+2x+3x2+…+nxn-1(x≠0,n∈N*);
(2)Sn=Cn1+2Cn2+3Cn3+…+nCnn(n∈N*).

查看答案和解析>>


同步练习册答案