1.已知, a, , -, , -构成一等差数列.其前n项和为=n, 设=, 记{}的前n项和为, (1) 求数列{}的通项公式,(2) 证明:<1. 解:(1) ==1, 当n≥2时, =-=2n-1; 由于n=1时符合公式.∴ =2n-1 (n≥1). (2) =, ∴ =, 两式相减得 =+=+(1-)-, ∴ =+(1-)-<1, 查看更多

 

题目列表(包括答案和解析)

设等比数列{an}的前n项和为Sn,已知
(1)求数列{an}的通项公式;
(2)在an与a n+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

已知数列{am}是首项为a,公差为b的等差数列,{bn}是首项为b,公比为a的等比数列,且满足a1<b1<a2<b2<a3,其中a、b、m、n∈N*.
(Ⅰ)求a的值;
(Ⅱ)若数列{1+am}与数列{bn}有公共项,将所有公共项按原顺序排列后构成一个新数列{cn},求数列{cn}的通项公式;
(Ⅲ)记(Ⅱ)中数列{cn}的前项之和为Sn,求证:

查看答案和解析>>

(2011•普宁市模拟)已知数列{am}是首项为a,公差为b的等差数列,{bn}是首项为b,公比为a的等比数列,且满足a1<b1<a2<b2<a3,其中a、b、m、n∈N*.
(Ⅰ)求a的值;
(Ⅱ)若数列{1+am}与数列{bn}有公共项,将所有公共项按原顺序排列后构成一个新数列{cn},求数列{cn}的通项公式;
(Ⅲ)记(Ⅱ)中数列{cn}的前项之和为Sn,求证:
9
S1S2
+
9
S2S3
+
9
S3S4
+…+
9
SnSn+1
19
42
(n≥3)

查看答案和解析>>


同步练习册答案