利用均值不等式: 值? 注意如下结论: 查看更多

 

题目列表(包括答案和解析)

(1)若,求证:

(2)已知,且, 求证:中至少有一个小于2.

【解析】第一问利用均值不等式,可知

第二问中,

证明:(1)

(2)

 

查看答案和解析>>

已知 求证:

【解析】本试题组要是利用均值不等式配凑法,来证明关于不等式的证明问题。也可以运用分析法得到。

 

查看答案和解析>>

如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力   第一问要利用相似比得到结论。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)

第二问,  

当且仅当

(3)令

∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.                

∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

已知数列的前项的和为是等比数列,且

⑴求数列的通项公式;

⑵设,求数列的前项的和

⑴   ,数列的前项的和为,求证:

【解析】第一问利用数列

依题意有:当n=1时,

时,

第二问中,利用由得:,然后借助于错位相减法

第三问中

结合均值不等式放缩得到证明。

 

查看答案和解析>>


同步练习册答案