2.求二面角大小时.关键是找二面角的平面角.可充分利用定义法或垂面法等. 查看更多

 

题目列表(包括答案和解析)

已知△ABC和△DBC是两个有公共斜边的直角三角形,并且AB=AD=AC=2a,CD=
6
a

(1)若P是AC边上的一点,当△PDB的面积最小时,求二面角B-PD-C的正切值;
(2)在(1)的条件下,求点C到平面PBD的距离;
(3)能否找到一个球,使A,B,C,D都在该球面上,若不能,请说明理由;若能,求该球的内接正三棱柱的侧面积的最大值.

查看答案和解析>>

精英家教网如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,D、E、F分别是棱PA、PB、PC的中点,连接DE,DF,EF.
(1)求证:平面DEF∥平面ABC;
(2)若PA=BC=2,当三棱锥P-ABC的体积的最大值时,求二面角A-EF-D的平面角的余弦值.

查看答案和解析>>

在Rt△ABC中,AC=4,BC=3,∠C=90°,D,E分别为AC,AB边上的点,且DE∥BC,沿DE将△ADE折起(记为△A1DE),使二面角A1-DE-B为直二面角.
(1)当E点在何处时,A1B的长度最小,并求出最小值;
(2)当A1B的长度最小时,求二面角A1-BE-C的大小.

查看答案和解析>>

精英家教网如图,在三棱锥A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,动点D在线段AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当点D运动到线段AB的中点时,求二面角D-CO-B的大小;
(Ⅲ)当CD与平面AOB所成角最大时,求三棱锥C-OBD的体积.

查看答案和解析>>

精英家教网精英家教网已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>


同步练习册答案