B. 查看更多

 

题目列表(包括答案和解析)

B.已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.

查看答案和解析>>

B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-
π
6
)=a截得的弦长为2
3
,求实数a的值.

查看答案和解析>>

B.(不等式选做题)若关于x的方程x2+x+|a-
14
|+|a|=0(a∈R)
有实根,则a的取值范围是
 

查看答案和解析>>

B.选修4-2:矩阵与变换

试求曲线在矩阵MN变换下的函数解析式,其中M =N =

查看答案和解析>>

B.选修4-2:矩阵与变换
已知矩阵A,其中,若点在矩阵A的变换下得到
(1)求实数的值;
(2)矩阵A的特征值和特征向量.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

D

D

C

A

C

B

A

C

C

C

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。

13.13     14.       15.2           16.1005

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

解(I)

      

  (Ⅱ)由

        

18.(本小题满分12分)

解(I)记事件A;射手甲剩下3颗子弹,

      

(Ⅱ)记事件甲命中1次10环,乙命中两次10环,事件;甲命中2次10环,乙命中1次10环,则四次射击中恰有三次命中10环为事件

(Ⅲ)的取值分别为16,17,18,19,20,

     

19.(本题满分12分)

证(Ⅰ)因为侧面,故

 在中,   由余弦定理有

  故有 

  而     且平面

     

(Ⅱ)由

从而  且

 不妨设  ,则,则

  则

中有   从而(舍负)

的中点时,

 法二:以为原点轴,设,则       由得    即

      

      化简整理得       或

     当重合不满足题意

     当的中点

     故的中点使

 (Ⅲ)取的中点的中点的中点的中点

 连,连,连

 连,且为矩形,

   故为所求二面角的平面角

中,

法二:由已知, 所以二面角的平面角的大小为向量的夹角

因为  

 

20.(本小题满分12分)

(1)由

        切线的斜率切点坐标(2,5+

        所求切线方程为

   (2)若函数为上单调增函数,

        则上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述问题等价于

        而为在上的减函数,

        则于是为所求

21.(本小题满分12分)

解:(1)

        ∵直线l:x-y+2=0与圆x2+y2=b2相切,

=b,∴b=,b2=2,∴=3.                                                    

∴椭圆C1的方程是

(2)∵MP=MF,∴动点M到定直线l1:x=-1的距离等于它的定点F2(1,0)的距离,

∴动点M的轨迹是以l1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为

(3)Q(0,0),设

得 

化简得

当且仅当时等号成立,

,又∵y­22≥64,

∴当.    故的取值范围是.

22.(本小题满分14分)

解(I)由题意,令

      

 (Ⅱ)

      

  (1)当时,成立:

  (2)假设当时命题成立,即

       当时,

      

 

 

 


同步练习册答案