题目列表(包括答案和解析)
已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求动点M的轨迹的方程;
(Ⅲ)过椭圆的焦点作直线与曲线交于A、B两点,当的斜率为时,直线 上是否存在点M,使若存在,求出M的坐标,若不存在,说明理由
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设与轴交于点,不同的两点在上(与也不重合),且满足,求的取值范围.
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂
直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,
求出的斜率范围,若不存在,说明理由。
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
B
D
D
C
A
C
B
A
C
C
C
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。
13.13 14. 15.2 16.1005
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
解(I)
(Ⅱ)由得,
18.(本小题满分12分)
解(I)记事件A;射手甲剩下3颗子弹,
(Ⅱ)记事件甲命中1次10环,乙命中两次10环,事件;甲命中2次10环,乙命中1次10环,则四次射击中恰有三次命中10环为事件
(Ⅲ)的取值分别为16,17,18,19,20,
19.(本题满分12分)
证(Ⅰ)因为侧面,故
在中, 由余弦定理有
故有
而 且平面
(Ⅱ)由
从而 且 故
不妨设 ,则,则
又 则
在中有 从而(舍负)
故为的中点时,
法二:以为原点为轴,设,则 由得 即
化简整理得 或
当时与重合不满足题意
当时为的中点
故为的中点使
(Ⅲ)取的中点,的中点,的中点,的中点
连则,连则,连则
连则,且为矩形,
又 故为所求二面角的平面角
在中,
法二:由已知, 所以二面角的平面角的大小为向量与的夹角
因为
故
20.(本小题满分12分)
(1)由
切线的斜率切点坐标(2,5+)
所求切线方程为
(2)若函数为上单调增函数,
则在上恒成立,即不等式在上恒成立
也即在上恒成立。
令上述问题等价于
而为在上的减函数,
则于是为所求
21.(本小题满分12分)
解:(1),
∵直线l:x-y+2=0与圆x2+y2=b2相切,
∴=b,∴b=,b2=2,∴=3.
∴椭圆C1的方程是
(2)∵MP=MF,∴动点M到定直线l1:x=-1的距离等于它的定点F2(1,0)的距离,
∴动点M的轨迹是以l1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为。
(3)Q(0,0),设,
,
由得 ,
,化简得,
当且仅当时等号成立,
,又∵y22≥64,
∴当. 故的取值范围是.
22.(本小题满分14分)
解(I)由题意,令
(Ⅱ)
(1)当时,成立:
(2)假设当时命题成立,即
当时,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com