∵且 ∴平面ADC. 查看更多

 

题目列表(包括答案和解析)

在平面四边形ABCD中,△ABC为正三角形,△ADC为等腰直角三角形,AD=DC=2,将△ABC沿AC折起,使点B至点P,且PD=2数学公式,M为PA的中点,N在线段PD上.

(I)若PA⊥平面CMN,求证:AD∥平面CMN;
(II)求直线PD与平面ACD所成角的余弦值.

查看答案和解析>>

在平面四边形ABCD中,△ABC为正三角形,△ADC为等腰直角三角形,AD=DC=2,将△ABC沿AC折起,使点B至点P,且PD=2,M为PA的中点,N在线段PD上.

(I)若PA⊥平面CMN,求证:AD∥平面CMN;
(II)求直线PD与平面ACD所成角的余弦值.

查看答案和解析>>

如图所示,PA⊥平面ABCD,∠ADC=90°,AD∥BC,AB⊥AC,且AB=AC=2,G为△PAC的重心,E为PB的中点,F在线段BC上,且CF=2FB.
(1)求证:FG∥平面PAB;
(2)求证:FG⊥AC;
(3)当PA长度为多少时,FG⊥平面ACE?

查看答案和解析>>

如图所示,PA⊥平面ABCD,∠ADC=90°,ADBC,AB⊥AC,且AB=AC=2,G为△PAC的重心,E为PB的中点,F在线段BC上,且CF=2FB.
(1)求证:FG平面PAB;
(2)求证:FG⊥AC;
(3)当PA长度为多少时,FG⊥平面ACE?
精英家教网

查看答案和解析>>

如图所示,PA⊥平面ABCD,∠ADC=90°,AD∥BC,AB⊥AC,且AB=AC=2,G为△PAC的重心,E为PB的中点,F在线段BC上,且CF=2FB.
(1)求证:FG∥平面PAB;
(2)求证:FG⊥AC;
(3)当PA长度为多少时,FG⊥平面ACE?

查看答案和解析>>


同步练习册答案