(3)在CD上存在点.使得MO平面.该点为的中点.---10分 证明如下: 查看更多

 

题目列表(包括答案和解析)

精英家教网△OAB是边长为4的正三角形,CO⊥平面OAB且CO=2,设D、E分别是OA、AB的中点.
(1)求证:OB∥平面CDE;
(2)求三棱锥O-CDE的体积;
(3)在CD上是否存在点M,使OM⊥平面CDE,若存在,则求出M点的位置,若不存在,请说明理由.

查看答案和解析>>

已知两点M(1,
5
4
),N(-4,-
5
4
),给出下列曲线方程:
①4x+2y-1=0;
②x2+y2=3;
x2
2
+y2=1;
x2
2
-y2=1.
在曲线上存在点P满足|MP|=|NP|的所有曲线方程是(  )
A、①③B、②④
C、①②③D、②③④

查看答案和解析>>

如图,△ABC内接于圆柱的底面圆O,AB是圆O的直径,AB=2,BC=1,DC、EB是两条母线,且 tan∠EAB=
3
2

(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE,证明你的结论.

查看答案和解析>>

精英家教网如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
3
2
,四边形DCBE为平行四边形,DC⊥平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.

查看答案和解析>>

已知两点M(1,
5
4
),N(-4,
5
4
),给出下列曲线方程
①x+2y-1=0; 
②x2+y2=3;   
x2
2
+y2=1
      
x2
2
-y2=1

在曲线上存在点P满足
.
MP
.
=
.
NP
.
的所有曲线方程是(  )

查看答案和解析>>


同步练习册答案