解:由题知.恒成立.故|x-1|+|x-2|不大于的最小值 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)  设函数

   (I)若函数处取得极值,求此时函数的单调区间;

   (II)已知不等式恒成立,求x的取值范围。

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>

仔细阅读下面问题的解法:

    设A=[0, 1],若不等式21-x-a>0在A上有解,求实数a的取值范围。

    解:由已知可得  a 21-x

        令f(x)= 21-x ,∵不等式a <21-x在A上有解,

        ∴a <f(x)在A上的最大值.

        又f(x)在[0,1]上单调递减,f(x)max =f(0)=2.  ∴实数a的取值范围为a<2.

研究学习以上问题的解法,请解决下面的问题:

(1)已知函数f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函数及反函数的定义域A;

(2)对于(1)中的A,设g(x)=,x∈A,试判断g(x)的单调性(写明理由,不必证明);

(3)若B ={x|>2x+a–5},且对于(1)中的A,A∩B≠F,求实数a的取值范围。

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=数学公式x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|数学公式>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>

已知,设是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.

【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”为真命题,只需P真Q真即可。

解:由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

综上,要使“P∧Q”为真命题,只需P真Q真,即

解得实数m的取值范围是(4,8]

 

查看答案和解析>>


同步练习册答案