已知双曲线的右焦点为F.若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点.则此双曲线离心率的取值范围是 查看更多

 

题目列表(包括答案和解析)

已知双曲线数学公式的右顶点为A(2,0),右焦点为F、O为坐标原点,点F,A到渐近线的距离之比为数学公式,过点B(0,2)且斜率为k的直线l与该双曲线交于不同的两点P,Q.
(I)求双曲线的方程及k的取值范围;
(II)是否存在常数k,使得向量数学公式垂直?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

已知双曲线的右顶点为A(2,0),右焦点为F、O为坐标原点,点F,A到渐近线的距离之比为,过点B(0,2)且斜率为k的直线l与该双曲线交于不同的两点P,Q.
(I)求双曲线的方程及k的取值范围;
(II)是否存在常数k,使得向量垂直?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

已知双曲线的左顶点为A,右焦点为F,过点F作垂直于x轴的直线与双曲线交于B、C两点,且AB⊥AC,|BC|=6.
(1)求双曲线的方程;
(2)设过点F且不垂直于x轴的直线l与双曲线分别交于点P、Q,请问:是否存在直线l,使△APQ构成以A为直角顶点的等腰直角三角形?若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
与椭圆
x2
8
+
y2
4
=1
有公共焦点,且以抛物线y2=2x的准线为双曲线C的一条准线.动直线l过双曲线C的右焦点F且与双曲线的右支交于P、Q两点.
(1)求双曲线C的方程;
(2)无论直线l绕点F怎样转动,在双曲线C上是否总存在定点M,使MP⊥MQ恒成立?若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)经过点P(4,
15
),且双曲线C的渐近线与圆x2+(y-3)2=4相切.
(1)求双曲线C的方程;
(2)设F(c,0)是双曲线C的右焦点,M(x0,y0)是双曲线C的右支上的任意一点,试判断以MF为直径的圆与以双曲线实轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

一、选择题

1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

7、B         8、B        9、C          10、B        11、B        12、A(C)

二、填空题

13、6          14、           15、31           16、

三、解答题

17、解:⑴由

       由 

        

       ∴函数的最小正周期T= …………………6分

       ⑵由

       ∴fx)的单调递减区间是

       ⑶,∴奇函数的图象左移 即得到的图象,

故函数的图象右移后对应的函数成为奇函数.…………………12分

18、(文)解:(1),又. ∴.

(2)至少需要3秒钟可同时到达点.

到达点的概率. 到达点的概率.

     故所求的概率.

(理)解:(Ⅰ)的概率分布为

1.2

1.18

1.17

由题设得,即的概率分布为

0

1

2

的概率分布为

1.3

1.25

0.2

所以的数学期望

(Ⅱ)由

,∴

 

19、解:(1)取中点,连结,∵的中点,的中点.

  所以,所以………………………… 2分

平面,所以平面………………………………………… 4分

(2)分别在两底面内作,连结,易得,以为原点,轴,轴,轴建立直角坐标系,

,则……………………………………………………… 5分

  .

易求平面的法向量为…………………………………………… 7分

设平面的法向量为

,由…………… 9分

  ∴…………… 11分

由题知 ∴

所以在上存在点,当是直二面角.…………… 12分

20、解:(1)由,得,两式相减,得,∴,∵是常数,且,故

为不为0的常数,∴是等比数列.

(2)由,且时,,得

,∴是以1为首项,为公差的等差数列,

,故.

(3)由已知,∴

相减得:,∴

递增,∴均成立,∴∴,又,∴最大值为7.

21、(文)解:(Ⅰ)因为

                      

             又  

             因此    

             解方程组得 

         (Ⅱ)因为     

             所以     

             令      

             因为    

                     

             所以     在(-2,0)和(1,+)上是单调递增的;

                           在(-,-2)和(0,1)上是单调递减的.

         (Ⅲ)由(Ⅰ)可知         

            

 

(理)(1)证:令,令

            时,.  ∴

             ∴ 即.

  (2)∵是R上的奇函数  ∴  ∴

       ∴  ∴  故.

       故讨论方程的根的个数.

       即的根的个数.

       令.注意,方程根的个数即交点个数.

        对, ,

        令, 得

         当时,; 当时,.  ∴

         当时,;   当时,, 但此时

,此时以轴为渐近线。

       ①当时,方程无根;

②当时,方程只有一个根.

③当时,方程有两个根.

 (3)由(1)知,   令,

      ∴,于是,

      ∴

         .

22、(文)22.解:(1)在中,

.  (小于的常数)

故动点的轨迹是以为焦点,实轴长的双曲线.方程为

(2)方法一:在中,设

假设为等腰直角三角形,则

由②与③得:

由⑤得:

故存在满足题设条件.

方法二:(1)设为等腰直角三角形,依题设可得:

所以

.①

,可设

.②

由①②得.③

根据双曲线定义可得,

平方得:.④

由③④消去可解得,

故存在满足题设条件.

 

 

 

 

(理)解:(1) 

    于是,所求“果圆”方程为

    .                    

(2)由题意,得  ,即

         ,得.  

     又.  .                                             

(3)设“果圆”的方程为

    记平行弦的斜率为

时,直线与半椭圆的交点是

,与半椭圆的交点是

 的中点满足  得 .  

      

    综上所述,当时,“果圆”平行弦的中点轨迹总是落在某个椭圆上. 

    当时,以为斜率过的直线与半椭圆的交点是.  

由此,在直线右侧,以为斜率的平行弦的中点轨迹在直线上,即不在某一椭圆上.   当时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.

 


同步练习册答案