函数的导函数..则 . 查看更多

 

题目列表(包括答案和解析)

的导函数满足,其中常数,则曲线在点处的切线方程为         

 

查看答案和解析>>

的导函数满足,其中常数,则曲线在点处的切线方程为         

查看答案和解析>>

函数的图像如图,为函数的导函数,则不等式的解集为       

 

 

 

查看答案和解析>>

函数的图像如图为函数的导函数,则不等式的解集为     

 

查看答案和解析>>

函数的定义域为开区间,导函数内的图象如图所示,则函数在开区间内极值点有(   )

   A.1个      B。2个      C。3个          D。4个

 

 

 

 

查看答案和解析>>

 

一、             选择题(本大题共12小题,每小题5分,共60分)

CDAB   CDAB     ABBA

二、填空题:(本大题共4小题,每小题4分,共16分)

13、                   14、

15、                               16、

三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。

17、解、由题,则

 

0

 

2

 

0

 

 

递增

极大值

递减

 

时,;当时,;当时,

所以,当时,;当时,

18、解、(1)设甲投球一次命中为事件A,;设乙投球一次命中为事件B,

则甲、乙两人在罚球线各投球一次,恰好命中一次的概率

答:甲、乙两人在罚球线各投球一次,恰好命中一次的概率为

 

(2)甲、乙两人在罚球线各投球二次,这四次投球中至少一次命中的对立面是这四次投球中无一次命中,

所以甲、乙两人在罚球线各投球二次,这四次投球中至少一次命中的的概率是

答:甲、乙两人在罚球线各投球二次,这四次投球中至少一次命中的的概率是

19、解、(1)中,

(2)以分别为轴,如图建立直角坐标系,设

所以与平面所成的角为

20、解:(1)∵

依题意得   ∴                     

                        

(2)设第r +1项含x3项,

 

                       

∴第二项为含x3的项:T2=-2=-18x3

21、解、(1)设,若

,又,所以

,而,所以无解。即直线与直线不可能垂直。

(2)

所以的范围是

22、(Ⅰ)解:当时,,得,且

所以,曲线在点处的切线方程是,整理得

.。

(Ⅱ)解:

,解得

由于,以下分两种情况讨论.

(1)若,当变化时,的正负如下表:

因此,函数处取得极小值,且

函数处取得极大值,且

(2)若,当变化时,的正负如下表:

因此,函数处取得极小值,且

函数处取得极大值,且

(Ⅲ)证明:由,得,当时,

由(Ⅱ)知,上是减函数,要使

只要

        ①

,则函数上的最大值为

要使①式恒成立,必须,即

所以,在区间上存在,使得对任意的恒成立.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案