导数法 [典型例题] [例1] 求下列函数值域 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) 答案: (1) (2) (3) (4) (5) (6) (7) (8) ∴ (9) (10) 且 且 且 (11)令 (12)令 (13)令 ∴ (14) ① ② 且 ∴ (15) (16)P()A ∴ ∴ (17) ∴ ∴ ∴ (18) 令 ∴ ∴ [例2] .为方程的两根.为何值时.最小.并求最小值. 答案: ∴ 时. [例3] ...求的最值. 答案: ∴ [模拟试题] 查看更多

 

题目列表(包括答案和解析)

我们把形如y=f(x
)
φ(x)
 
的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边求对数得lny=lnf(x
)
φ(x)
 
=φ(x)lnf(x)
,两边对x求导数,得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x
)
φ(x)
 
[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,运用此方法可以求得函数y=
x
x
 
(x>0)
在(1,1)处的切线方程是
y=x
y=x

查看答案和解析>>

我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得lny=φ(x)lnf(x),两边求导数,得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x)φ(x)[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,运用此方法可以探求得函数y=x
1
x
的一个单调递增区间是(  )

查看答案和解析>>

函数y=f(x)g(x)在求导数时,可以运用对数法:在函数解析式两边求对数得lny=g(x)lnf(x),两边求导数
y′
y
=g′(x)lnf(x)+g(x)
f′(x)
f(x)
,于是y'=f(x)g(x)[g′(x)lnf(x)+g(x)
f′(x)
f(x)
]
.运用此方法可以探求得知y=x
1
x
(x>0)
的一个单调增区间为
 

查看答案和解析>>

Ⅰ(理)我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得,两边求导数,得

,于是,运用此方法可以探求得函数的一个单调递增区间是

A.       B.       C.       D.  

 

查看答案和解析>>

我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对x求导数,得于是,运用此方法可以求得函数在(1,1)处的切线方程是          .

 

查看答案和解析>>


同步练习册答案