19.设数列{an}的各项为正数.若对任意的正整数n, an与2的等差中项等于其前n项和n与2的等比中项.求{an}的通项公式. 查看更多

 

题目列表(包括答案和解析)

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是an2和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式Sn-1005>
a
2
n
2
恒成立,求这样的正整数m共有多少个?

查看答案和解析>>

设数列{an}的各项都是正数,记Sn为数列{an}的前n项和,且对任意n∈N*,都有a13+a23+a33+…+an3=Sn2
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意 n∈N*,都有bn+1>bn

查看答案和解析>>

设数列{an}的各项都是正数,且对任意n∈N*,都有a13+a23+a33+…+=Sn2,其中Sn为数列{an}的前n项和.
(I)求证:an2=2Sn-an
(II)求数列{an}的通项公式;
(III)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn
1
2
an2和an的等差中项
(Ⅰ)证明:数列为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1

(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式2Sn-4200>
a
2
n
2
恒成立,试问:这样的正整数m共有多少个.

查看答案和解析>>

设数列{an}的各项都是正数,且对任意n∈N*,都有+…+,记Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n-1λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.

查看答案和解析>>


同步练习册答案