题目列表(包括答案和解析)
(本题15分)已知点是椭圆E:()上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,().求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
()(本题15分)已知a是实数,函数.
(Ⅰ)若f1(1)=3,求a的值及曲线在点处的切线
方程;
(Ⅱ)求在区间[0,2]上的最大值。
(本题15分)
已知抛物线,点,点E是曲线C上的一个动点(E不在直线AB上),设,C,D在直线AB上,轴。
(1)用表示在方向上的投影;
(2)是否为定值?若是,求此定值,若不是,说明理由。
(本题15分) 已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点,.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,且,求的值(点为坐标原点);
(Ⅲ)若坐标原点到直线的距离为,求面积的最大值.
(本题15分)
已知抛物线,点,点E是曲线C上的一个动点(E不在直线AB上),设,C,D在直线AB上,轴。
(1)用表示在方向上的投影;
(2)是否为定值?若是,求此定值,若不是,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com