题目列表(包括答案和解析)
已知由样本数据点集合求得的回归直线方程为 ,且。若去掉两个数据点和后重新求得的回归直线的斜率估计值为,则此回归直线的方程为_________________。
已知
是等差数列,d是公差且不为零,它的前n项和为设集合,若以A中元素作为点的坐标,这些点都在同一直线上,求这直线的斜率.已知是等差数列,d是公差且不为零,它的前n项和为设集合,若以A中元素作为点的坐标,这些点都在同一直线上,求这直线的斜率.
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,令则
令,则.当时,单调递减;当时,单调递增.故当,即
从而,又
所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
一、选择题:本大题共10小题,每小题5分,共50分。
1.B 2.D 3.A 4.A 5.B 6.C 7.C 8.C 9.A 10.B
二、填空题:本大题共5小题,每小题4分,共20分。
11.5 12. 13. 14.7 15.
三、解答题:本大题共6小题,共80分。
16.解:(I)由三角函数的定义可知
又为正三角形,
(Ⅱ)
圆的面积为。
该点落在内的概率
17.解:(I)依题意,每个月更新的车辆数构成一个首项为,公差为的等差数列,设第
个月更新的车辆数为,则
该市的出租车总数(辆)
(Ⅱ)依题意,每个月更新的车辆数构成一个首项为,公比为1.1的等比数列,则第
个月更新的车辆数,设至少需要个月才能更新完毕,
个月更新的车辆总数,
即,由参数数据可得
故以此速度进行更新,至少需要37个月才能更新完该市所有的出租车
18.解(I),为等腰直角三角形,
(Ⅱ)如图建立空间直角坐标系,则
设平面的一个法向量为,
则有 得
平面的一个法向量
而的一个法向量
平面与平面所成的角的余弦值
(Ⅲ),
设平面的法向量为,则有
平面的一个法向量为
若要使得面,则要,即
解得, 当时, 面
19.解法一:
(I)设椭圆方程为,由题意知
故椭圆方程为
(Ⅱ)由(I)得,所以,设的方程为()
代入,得
设则
由,
当时,有成立。
(Ⅲ)在轴上存在定点,使得、、三点共线。
依题意知,直线BC的方程为,
令,则
的方程为、在直线上,
在轴上存在定点,使得、、三点共线。
解法二:(I)同解法一。
(Ⅱ)由(I)得,所以。
设的方程为
代入,得
设则
当时,有成立。
(Ⅲ)在轴上存在定点,使得、、三点共线。
设存在使得、、三点共线,则,
,
即
,。
所以,存在,使得、、三点共线。
20.解:(I)
当时,
由或。
x
(0,1)
1
+
―
单调递增
极大值
单调递减
时,,无极小值。
(Ⅱ)存在单调递减区间,
在内有解,即在内有解。
若,则,在单调递增,不存在单调递减区间;
若,则函数的图象是开口向上的抛物线,且恒过点(0,1),要
使在内有解,则应有
或,由于,;
若,则函数的图象是开口向下的抛物线,且恒过点(0,1),
在内一定有解。
综上,或。
(Ⅲ)依题意:,假设结论不成立,
则有
①―②,得
由③得,
即
设,则,
令
,在(0,1)上为增函数。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com