问题1.(上海)若.则函数的图象不经过 第一象限 第二象限 第三象限 第四象限 (安徽文)设.且...则的大小关系为 若函数(.)的定义域和值域都是.则 若.则..从小到大依次为 问题2.求下列函数的值域 : ,(≥) 问题3. (江苏)不等式的解集为 若不等式≤在内恒成立.则的取值范围是 ≤ ≤ 问题4.已知函数(且) 求的定义域.值域,求证该函数的图象关于直线对称, 解不等式 问题5. 设且.定义在区间内的函数是奇函数. 求的取值范围,讨论函数的单调性. 查看更多

 

题目列表(包括答案和解析)

(2005上海,21)对定义域分别是的函数y=f(x)y=g(x),规定:函数

(1)若函数,写出函数h(x)的解析式;

(2)求问题(1)中函数h(x)的值域;

(3)g(x)=f(xα),其中α是常数,且α[0π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos 4x,并予以证明.

查看答案和解析>>

(2007•上海)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16
3
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
16
3
,求侧棱长”;也可以是“若正四棱锥的体积为
16
3
,求所有侧面面积之和的最小值”.
试给出问题“在平面直角坐标系xoy中,求点P(2,1)到直线3x+4y=0的距离.”的一个有意义的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>

(2007•上海)我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)设第2行的数依次为B1,B2,…,Bn,试用n,q表示B1+B2+…+Bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2
(3)请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).
①能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm (m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.
②能否找到q的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.

查看答案和解析>>

(2010•武昌区模拟)某单位选派甲、乙、丙三人组队参加“2010上海世博会知识竞赛”,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是
3
4
,甲、丙两人都答错的概率是
1
12
,乙、丙两人都答对的概率是
1
4
,规定每队只要有一人答对此题则记该队答对此题.
(Ⅰ)求该单位代表队答对此题的概率;
(Ⅱ)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错除该题不得分外还要倒扣去10分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其它题没有影响,求该单位代表队必答题得分的期望(精确到1分).

查看答案和解析>>

(本小题满分12分)

       某单位选派甲、乙、丙三人组队参加“2010上海世博会知识竞赛”,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是,甲、丙两人都答错的概率是,乙、丙两人都答对的概率是,规定每队只要有一人答对此题则记该队答对此题.

(Ⅰ)求该单位代表队答对此题的概率;

(Ⅱ)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错除该题不得分外还要倒扣去10分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其它题没有影响,求该单位代表队必答题得分的期望(精确到1分).

 

查看答案和解析>>


同步练习册答案