建造一个容积为8m.深为2m的长方体无盖水池.如果池底和池壁的造价每平方米分别为120元和80元.则水池的最低造价为 . 查看更多

 

题目列表(包括答案和解析)

建造一个容积为18m3,深为2m的长方形无盖水池,如果池底和池壁每m2的造价分别为200元和150元,那么水池的最低造价为
5400
5400
元.

查看答案和解析>>

水是生命之源、生产之要、生态之基.2010年春季,西南5省面临世纪大旱,5000多万同胞受灾.这场少见的世纪大旱使农作物受灾面积近500万公顷,其中40万公顷良田颗粒无收,2000万同胞面临无水可饮的绝境.某乡镇对此次旱灾进行了认真的分析、总结,决定建造一个容积为4800m3,深为3m的长方体形无盖贮水池,以解决当地居民饮水、灌溉问题.已知贮水池池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底一边长为xm,总造价为y(单位:元).
(1)试写出以x为自变量的函数y的解析式;
(2)求函数y的最小值,及相应x的值,并指出其实际意义.

查看答案和解析>>

要建造一个容积为2000m3,深为5m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,若水池底的一边长为xm,水池的总造价为y元.
(1)把水池总造价y表示为x的函数y=f(x),并写出函数的定义域.
(2)试证明:函数y=f(x)当x∈(0,20]时是减函数,当x∈[20,+∞)时是增函数
(3)当水池底的一边长x为多少时,水池的总造价最低,最低造价是多少.

查看答案和解析>>

建造一个容积为8m3深为2m的长方体形无盖水池,如果池底和池壁的造价分别为120元/m2和80元/m2
(1)求总造价关于一边长的函数解析式,并指出该函数的定义域;
(2)判断(1)中函数在(0,2]和[2,+∞)上的单调性并用定义法加以证明;
(3)如何设计水池尺寸,才能使总造价最低.

查看答案和解析>>

建造一个容积为8m3,深为2m的长方体无盖水池,如果池底的造价为每平方米120元,池壁的造价为每平方米80元,
(1)设池底的长为x m,试把水池的总造价S表示成关于x的函数;
(2)如何设计池底的长和宽,才能使总造价S最低,求出该最低造价.

查看答案和解析>>


同步练习册答案