5.说明:设数列是等差数列.且公差为.(Ⅰ)若项数为偶数.设共有项.则①奇偶, ② ,(Ⅱ)若项数为奇数.设共有项.则①偶奇,②. 查看更多

 

题目列表(包括答案和解析)

设数列{an}(n=1,2,…)是等差数列,且公差为d,若数列{an}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若a1=4,d=2,判断该数列是否为“封闭数列”,并说明理由?
(2)设Sn是数列{an}的前n项和,若公差d=1,a1>0,试问:是否存在这样的“封闭数列”,使
lim
n→∞
(
1
S1
+
1
S2
+…+
1
Sn
)=
11
9
;若存在,求{an}的通项公式,若不存在,说明理由;
(3)试问:数列{an}为“封闭数列”的充要条件是什么?给出你的结论并加以证明.

查看答案和解析>>

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列{Sn+λ•n+
λ
2n
}
为等差数列?若存在,求出λ的值;若不存在,则说明理由.
(Ⅲ)求证:
1
6
n
k=1
2-k
(ak+1)(ak+1+1)
1
2

查看答案和解析>>

已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an
Sn
n
)|n∈N*},B={(x,y)|
1
4
x2-y2=1,x,y∈R}.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明:
(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;
(2)A∩B至多有一个元素;
(3)当a1≠0时,一定有A∩B≠∅.

查看答案和解析>>

已知{an}是等差数列,公差d≠0,且a1,a3,a13成等比数列,Sn是{an}的前n项和.
(1)求证:S1,S3,S9成等比数列;
(2)设数列bn=
nanSn
.是否存在正整数m,使得n>m时,bn>1.99恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

设数列{an}的前n项和为Sn,其中an≠0,a1为常数,且-a1,Sn,an+1成等差数列.
(1)求{an}的通项公式;
(2)若a1=3,求数列{log3an}的前n项和Rn
(3)设bn=1-Sn,问:是否存在a1,使数列{bn}为等比数列?若存在,求出a1的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案