题目列表(包括答案和解析)
解:(1)OA=1,OC=2
则A点坐标为(0,1),C点坐标为(2,0)
设直线AC的解析式为y=kx+b
解得
直线AC的解析式为··················· 2分
(2)或
(正确一个得2分)························· 8分
(3)如图,设
过点作于F
由折叠知
或2··········· 10分
解:(1)①(,);-----------2分
②;--------------------4分
(2)△AO1O3经过旋转相似变换,得到,此时,线段O1O3变为线段;------------------------------6分
经过旋转相似变换,得到,此时,线段变为线段AO2.------------------------------8分
,,
∴O1O3= AO2,O1O3⊥ AO2------10分
解:在Rt△AEC tan∠ACE=,
∴ AE =tan30°×10≈5.77
∴ AB=AE+EB=5.77+1.5=7.27≈7.3(米)
解:作BE⊥l于点E,DF⊥l于点F. ……2分
∵∠α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,
∴∠ADF=∠α=36°.根据题意,得BE=24mm, DF=48mm. ……4分
在Rt△ABE中,sinα=BE/AB,∴AB=BE/sin36°=40(mm).……6分
在Rt△ADF中,cos∠ADF=DF/AD,∴AD=DF/COS36°=60(mm).8分
∴矩形ABCD的周长=2(40+60)=200(mm). ……10分
解:(1)由抛物线C1:得顶点P的坐标为(2,5)………….1分
∵点A(-1,0)在抛物线C1上∴.………………2分
(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..
∵点P、M关于点A成中心对称,
∴PM过点A,且PA=MA..
∴△PAH≌△MAG..
∴MG=PH=5,AG=AH=3.
∴顶点M的坐标为(,5).………………………3分
∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到
∴抛物线C3的表达式. …………4分
(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到
∴顶点N、P关于点Q成中心对称.
由(2)得点N的纵坐标为5.
设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.
∵旋转中心Q在x轴上,
∴EF=AB=2AH=6.
∴EG=3,点E坐标为(,0),H坐标为(2,0),R坐标为(m,-5).
根据勾股定理,得
①当∠PNE=90º时,PN2+ NE2=PE2,
解得m=,∴N点坐标为(,5)
②当∠PEN=90º时,PE2+ NE2=PN2,
解得m=,∴N点坐标为(,5).
③∵PN>NR=10>NE,∴∠NPE≠90º ………7分
综上所得,当N点坐标为(,5)或(,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com