(1)当点在何处时.的长度最小.并求出最小值, 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

如图:某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口的中点,分别落在线段上。已知米,米,记

(Ⅰ)试将污水净化管道的长度表示为的函数,并写出定义域;

(Ⅱ)若,求此时管道的长度

(Ⅲ)问:当取何值时,铺设管道的成本最低?并求出此时管道的长度。

 

查看答案和解析>>

(本小题满分14分)

如图:某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口的中点,分别落在线段上.已知米,米,记.

(1)试将污水净化管道的长度表示为的函数,并写出定义域;

(2)若,求此时管道的长度

(3)问:当取何值时,污水净化效果最好?并求出此时

管道的长度.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分14分)
如图:某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口的中点,分别落在线段上。已知米,米,记

(Ⅰ)试将污水净化管道的长度表示为的函数,并写出定义域;
(Ⅱ)若,求此时管道的长度
(Ⅲ)问:当取何值时,铺设管道的成本最低?并求出此时管道的长度。

查看答案和解析>>

(本小题满分14分)
如图:某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口的中点,分别落在线段上。已知米,米,记

(Ⅰ)试将污水净化管道的长度表示为的函数,并写出定义域;
(Ⅱ)若,求此时管道的长度
(Ⅲ)问:当取何值时,铺设管道的成本最低?并求出此时管道的长度。

查看答案和解析>>

(08年重庆一中一模理)在中,分别为边上的点,且。沿折起(记为),使二面角为直二面角。⑴当点在何处时,的长度最小,并求出最小值;⑵当的长度最小时,求直线与平面所成的角的大小;⑶当的长度最小时,求三棱锥的内切球的半径

查看答案和解析>>

一、DDBCD  CABCA

二、11.1;       12.;     13.           14.;    15.

16.

三.解答题(本大题共6小题,共76分)

17.解:(1)法一:由题可得

法二:由题

,从而

法三:由题,解得

,从而

(2),令

单调递减,

从而的值域为

18.解:(1)的可能取值为0,1,2,3,4,

因此随机变量的分布列为下表所示;

0

1

2

3

4

(2)由⑴得:

19.法一:(1)连接,设,则

因为,所以,故,从而

又因为

所以,当且仅当取等号。

此时边的中点,边的中点。

故当边的中点时,的长度最小,其值为

(2)连接,因为此时分别为的中点,

,所以均为直角三角形,

从而,所以即为直线与平面所成的角。

因为,所以即为所求;

(3)因,又,所以

,故三棱锥的表面积为

因为三棱锥的体积

所以

法二:(1)因,故

,则

所以

当且仅当取等号。此时边的中点。

故当的中点时,的长度最小,其值为

(2)因,又,所以

点到平面的距离为

,故,解得

,故

(3)同“法一”。

法三:(1)如图,以为原点建立空间直角坐标系,设,则

所以,当且仅当取等号。

此时边的中点,边的中点。

故当边的中点时,的长度最小,其值为

(2)设为面的法向量,因

。取,得

又因,故

因此,从而

所以

(3)由题意可设为三棱锥的内切球球心,

,可得

与(2)同法可得平面的一个法向量

,故

解得。显然,故

20.解:(1)当时,。令

故当单调递增;

单调递减。

所以函数的单调递增区间为

单调递减区间为

(2)法一:因,故

要使对满足的一切成立,则

解得

法二:,故

可解得

因为单调递减,因此单调递增,故。设

,因为

所以,从而单调递减,

。因此,即

(3)因为,所以

对一切恒成立。

,令

。因为,所以

单调递增,有

因此,从而

所以

21.解:(1)设,则由题

,故

又根据可得

,代入可得

解得(舍负)。故的方程为

(2)法一:设,代入

从而

因此

法二:显然点是抛物线的焦点,点是其准线上一点。

的中点,过分别作的垂线,垂足分别为

因此以为直径的圆与准线切(于点)。

重合,则。否则点外,因此

综上知

22.证明:(1)因,故

显然,因此数列是以为首项,以2为公比的等比数列;

(2)由⑴知,解得

(3)因为

所以

(当且仅当时取等号),

综上可得。(亦可用数学归纳法)

 


同步练习册答案