(2)过点的直线与曲线交于两点.设.与的夹角为.求证:. 查看更多

 

题目列表(包括答案和解析)

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1、l2,经过右焦点F垂直于l1的直线分别交l1、l2于A、B两点。已知成等差数列,且同向。
(1)求双曲线的离心率;
(2)设AB被双曲线所截得的线段的长为4,求双曲线的方程。

查看答案和解析>>


已知曲线C上任意一点到两个定点的距离之和为4。
(1)求曲线C的方程;
(2)设过的直线与曲线C交于M、N 两点,且为坐标原点),求直线的方程

查看答案和解析>>

已知双曲线的方程为,若直线截双曲线的一支所得弦长为5. 高@考@资@源@网

       (I)求的值;

       (II)设过双曲线上的一点的直线与双曲线的两条渐近线分别交于,且点分有向线段所成的比为。当时,求为坐标原点)的最大值和www.ks5u.com最小值

查看答案和解析>>

已知动圆C过点A(-2,0),且与圆相内切。

(1)求动圆C的圆心的轨迹方程;

(2)设直线: y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线交于不同两点E,F,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

 

查看答案和解析>>

已知斜率为1的直线l与双曲线C:(a>0,b>0)相交于B、D两点,且BD的中点为M(1,3)。
(1)求C的离心率;
(2)设C的右顶点为A,右焦点为F,|DF|·|BF|=17,证明:过A、B、D三点的圆与x轴相切。

查看答案和解析>>

一、DDBCD  CABCA

二、11.1;       12.;     13.           14.;    15.

16.

三.解答题(本大题共6小题,共76分)

17.解:(1)法一:由题可得

法二:由题

,从而

法三:由题,解得

,从而

(2),令

单调递减,

从而的值域为

18.解:(1)的可能取值为0,1,2,3,4,

因此随机变量的分布列为下表所示;

0

1

2

3

4

(2)由⑴得:

19.法一:(1)连接,设,则

因为,所以,故,从而

又因为

所以,当且仅当取等号。

此时边的中点,边的中点。

故当边的中点时,的长度最小,其值为

(2)连接,因为此时分别为的中点,

,所以均为直角三角形,

从而,所以即为直线与平面所成的角。

因为,所以即为所求;

(3)因,又,所以

,故三棱锥的表面积为

因为三棱锥的体积

所以

法二:(1)因,故

,则

所以

当且仅当取等号。此时边的中点。

故当的中点时,的长度最小,其值为

(2)因,又,所以

点到平面的距离为

,故,解得

,故

(3)同“法一”。

法三:(1)如图,以为原点建立空间直角坐标系,设,则

所以,当且仅当取等号。

此时边的中点,边的中点。

故当边的中点时,的长度最小,其值为

(2)设为面的法向量,因

。取,得

又因,故

因此,从而

所以

(3)由题意可设为三棱锥的内切球球心,

,可得

与(2)同法可得平面的一个法向量

,故

解得。显然,故

20.解:(1)当时,。令

故当单调递增;

单调递减。

所以函数的单调递增区间为

单调递减区间为

(2)法一:因,故

要使对满足的一切成立,则

解得

法二:,故

可解得

因为单调递减,因此单调递增,故。设

,因为

所以,从而单调递减,

。因此,即

(3)因为,所以

对一切恒成立。

,令

。因为,所以

单调递增,有

因此,从而

所以

21.解:(1)设,则由题

,故

又根据可得

,代入可得

解得(舍负)。故的方程为

(2)法一:设,代入

从而

因此

法二:显然点是抛物线的焦点,点是其准线上一点。

的中点,过分别作的垂线,垂足分别为

因此以为直径的圆与准线切(于点)。

重合,则。否则点外,因此

综上知

22.证明:(1)因,故

显然,因此数列是以为首项,以2为公比的等比数列;

(2)由⑴知,解得

(3)因为

所以

(当且仅当时取等号),

综上可得。(亦可用数学归纳法)

 


同步练习册答案