17. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)二次函数的图象经过三点.

(1)求函数的解析式(2)求函数在区间上的最大值和最小值

查看答案和解析>>

(本小题满分12分)已知等比数列{an}中, 

   (Ⅰ)求数列{an}的通项公式an

   (Ⅱ)设数列{an}的前n项和为Sn,证明:

   (Ⅲ)设,证明:对任意的正整数n、m,均有

查看答案和解析>>

(本小题满分12分)已知函数,其中a为常数.

   (Ⅰ)若当恒成立,求a的取值范围;

   (Ⅱ)求的单调区间.

查看答案和解析>>

(本小题满分12分)

甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为

   (Ⅰ)求甲至多命中2个且乙至少命中2个的概率;

   (Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.

查看答案和解析>>

(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.

   (1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m        

   (2)当时,求弦长|AB|的取值范围.

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分。

1.C    2.D    3.A    4.C    5.A    6.D    7.D    8.B    9.C    10.B

二、填空题:本答题共6小题,每小题4分,共24分。

11.=  22    12.   13.594     14.m=

15.    16.1,3

三、解答题:本大题共6小题,共76分。

17.(本小题满分12分)

解:(1)将函数(ω>0)的图象按向量平移,平移后的图象所对应的解析式为,由图象知,,所以.

∴所求解析式为                    (6分)

(2)∵sin(2α+)=sin2α?cos+cos2αsin=sinαcosα+(cos2α-sin2α)

==    (10分)

将tanα=代入得

sin(2α+)==                 (12分)

另解:由tanα=得:cosα=,sinα=。?                 (10分)

∴sin(2α+)=sin2α?cos+cos2α?sin=sinαcosα+ (2cos2α-1)= =                                   (12分)

18.(本小题满分12分)

解:设开关JAJB ,JC ,JD 能够闭合的事件依次为A、B、C、D,则P(A)=P(D)=0.7,P(B)=P(C)=0.8

(1)P(B?C)=P(B)? P(c)=0.8×0.8=0.64                             (6分)

(2)JA不能工作的概率为

JD不能工作的概率为                                           (8分)

               (10分)

所以整条线路能正常工作的概率为0.9676                             (12分)

答:9月份这段线路能正常工作的概率为0.9676。                       (14分)

19.(本小题满分12分)

解:(1)∵CF⊥平面ABC,∴AC是AF在平面ABC的射影

∵△ABC为边长是的等边三角形,M为AC中点

∴BM⊥AC,

∴AF⊥BM                            (3分)

(2)延长FE、CB交于一点N,则AN是平面AEF与平面ABC的交线

∵BE⊥平面ABC, CF⊥平面ABC

∴BE∥CF,∵CF=AB = 2BE,∴BE是△FCN的中位线B是CN的中点,

∴AN∥BM, AN⊥AC

∴AN⊥FA,∴∠FAC为所求二面角的平面角                           (6分)

∵CF=AC, ∴∠FAC=45°                                          (7分)

(3)V=VF-CAN-VE-ABN                                                                                 (9分)

=×a2a×a×sin1200×                                        (11分)

==                                                                     (12分)

注:第(2)问利用指明S/,S也可;第(3)问可用分割的方法,相应给分。

20.(本小题满分12分)

解(1)∵f′(x)=-x2+4ax-3a2=-(x-3a)(xa),由f′(x)>0得:a<x<3a

f′(x)<0得,x<ax>3a

则函数fx)的单调递增区间为(a,3a),单调递减区间为(-∞,a)和(3a,+∞)列表如下:

X

(-∞,a

a

a, 3a

3a

(3a,+ ∞)

f′(x

0

+

0

fx

a3+b

b

∴函数fx)的极大值为b,极小值为-a3+b                      (6分)

(2)上单调递减,

因此

∵不等式|f′(x)|≤a恒成立,

即a的取值范围是                                                                 (12分)

21.(本小题满分14分)

(1)由,得                        (2分)

,                                        (4分)

成等差数列,

                               (5分)

即:

即:,解之得:,              (6分)

经检验,是增根,∴.                                 (7分)

(2)证明:

              (9分)

时等号成立               (10分)

此时

即:。                                      (14分)

22.(本小题满分14分)

解(1)由双曲线C:知F(2,0), 第一、三象限的渐近线:

设点P,∵FP⊥,∴x=,∴P, A

=

(2)由得:

,M、N的中点为H

即H

则线段MN的垂直平分线为:

将点B(0,-1),的坐标代入,化简得:

则由得:,解之得

,所以

故m的取值范围是

 


同步练习册答案