1.集合{x| - x = 0 }的所有子集的个数为 查看更多

 

题目列表(包括答案和解析)

集合A={x|x2-2x-1=0,xR}的所有子集的个数为

A.4                              B.3                              C.2                              D.1

查看答案和解析>>

设集合Sn={1,2,3…n},若X是Sn的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0),若X的容量为奇(偶)数,则称X为Sn的奇(偶)子集.
(Ⅰ) 写出S4的所有奇子集;
(Ⅱ) 求证:Sn的奇子集与偶子集个数相等;
(Ⅲ)求证:当n≥3时,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.

查看答案和解析>>

设集合Sn={123,,n),若XSn的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0),若X的容量为奇(偶)数,则称XSn的奇(偶)子集.

I)写出S4的所有奇子集;

(Ⅱ)求证:Sn的奇子集与偶子集个数相等;

(Ⅲ)求证:当n3时,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.

 

查看答案和解析>>

设集合Sn={1,2,3,,n),若X是Sn的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0),若X的容量为奇(偶)数,则称X为Sn的奇(偶)子集.
(I)写出S4的所有奇子集;
(Ⅱ)求证:Sn的奇子集与偶子集个数相等;
(Ⅲ)求证:当n≥3时,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.

查看答案和解析>>

设集合Sn={1,2,3,,n),若X是Sn的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0),若X的容量为奇(偶)数,则称X为Sn的奇(偶)子集.
(I)写出S4的所有奇子集;
(Ⅱ)求证:Sn的奇子集与偶子集个数相等;
(Ⅲ)求证:当n≥3时,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.

查看答案和解析>>

必修

一、填空题

1、8  2、  3、2|P|  4、  5、向左移,在把各点的横坐标伸长到原来的3倍

6、18  7、120度  8、  9、  10、②④  11、  12、  13、  14、

二、解答题

15.解:(Ⅰ).………… 4分

,得

∴函数的单调增区间为 .………… 7分

(Ⅱ)由,得

.            ………………………………………… 10分

,或

. 

,∴.     …………………………………………… 14分

16.解:(Ⅰ)n≥2时,.     ………………… 4分

n=1时,,适合上式,

.               ………………… 5分

(Ⅱ).          ………………… 8分

∴数列是首项为4、公比为2的等比数列.   ………………… 10分

,∴.……………… 12分

Tn.            ………………… 14分

17、⑴    ⑵        ⑶不能

18、⑴

=1时,的最大值为20200,=10时,的最小值为12100。

19、⑴易知AB恒过椭圆的右焦点F(,0)    ⑵ S=       ⑶存在

20、⑴

⑶(

附加题选修参考答案

1、⑴BB=  , ⑵  

2、⑴    ⑵  ,  ,EX=1

3、   

4、⑴    ⑵ MN=2 

5、⑴特征值为2和3 ,对应的特征向量分别为

,椭圆在矩阵的作用下对应得新方程为

6、提示:,然后用基本不等式或柯西不等式即可。

 

 


同步练习册答案