题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线,
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数和,不等式恒成立,试求实数的取值范围.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B错;+==≥4,故A错;由基本不等式得≤=,即+≤,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D错.故选C.
.定义域为R的函数满足,且当时,,则当时,的最小值为( )
(A) (B) (C) (D)
.过点作圆的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
1-5 ACADC。 6-10 ACABB 11-12 DA
13. 28 14. 15. -4n+5 ; 16. ①③④
17.(1),,即,
,,, ,
,∴. 5分
18.解法一:证明:连结OC,
∴. ----------------------------------------------------------------------------------1分
,,
∴ . ------------------------------------------------------2分
在中,
∴即 ------------------3分
面. ----------------------------4分
(II)过O作,连结AE,
,
∴AE在平面BCD上的射影为OE.
∴.
∴ . -----------------------------------------7分
在中,,,,
∴.
∴二面角A-BC-D的大小为. ---------------------------------------------------8分
(III)解:设点O到平面ACD的距离为
,
∴.
在中, ,
.
而,∴.
∴点O到平面ACD的距离为.--------------------------------12分
解法二:(I)同解法一.
(II)解:以O为原点,如图建立空间直角坐标系,
则
,
∴. ------------6分
设平面ABC的法向量,
,,
由.
设与夹角为,则.
∴二面角A-BC-D的大小为. --------------------8分
(III)解:设平面ACD的法向量为,又,
. -----------------------------------11分
设与夹角为,
则 - 设O 到平面ACD的距离为h,
∵,∴O到平面ACD的距离为. ---------------------12分
19.(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,.
故取出的4个球均为黑球的概率为.…….6分
(Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥,
且,.
故取出的4个球中恰有1个红球的概率为...12分
20. 解:(Ⅰ)由已知,当时, ……………… 2分
由,得,∴p=…………….4分
∴.……………… 6分
(Ⅱ)由(1)得,. ……………… 7分
2 ; ①
. ② ………9分
②-①得,
==. ………………12分
21.解(I)
(II)
若时,是减函数,则恒成立,得
22.解(I)设
(3分)
(Ⅱ)(1)当直线的斜率不存在时,方程为
…………(4分)
(2)当直线的斜率存在时,设直线的方程为,
设,
,得
…………(6分)
…………………8分
………………….9分
注意也可用..........12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com