题目列表(包括答案和解析)
设数列的前n项和为,点均在函数y=-x+12的图像上.
(Ⅰ)写出关于n的函数表达式;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)求数列的前n项的和.
【解析】本试题主要是考查了数列的概念和数列的求和的综合运用。
(本小题满分14分)
设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.
(1)证明:为等比数列;
(2)设,求数列的前项和.
(本小题满分16分)已知数列是以为公差的等差数列,数列是以为公比的等比数列.
(Ⅰ)若数列的前项和为,且,,求整数的值;
(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项,使得恰好可以表示为该数列中连续项的和?请说明理由;
(Ⅲ)若(其中,且()是()的约数),
求证:数列中每一项都是数列中的项.
(本小题满分16分)
已知数列是等差数列,数列是等比数列,且对任意的,都有.
(1)若的首项为4,公比为2,求数列的前项和;
(2)若.
①求数列与的通项公式;
②试探究:数列中是否存在某一项,它可以表示为该数列中其它项的和?若存在,请求出该项;若不存在,请说明理由.
已知数列满足:当()时,,是数列 的前项和,定义集合是的整数倍,,且,表示集合中元素的个数,则 , .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com